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Abstract 
 

Research germane to product recalls and their causes is limited. With recall rates rising in 

many industries, it is timely and pertinent to comprehensively investigate recalls. The focus of my 

dissertation is on product recalls and their causes, with the objective of recall understanding and 

prevention. I study three important phases in the product recall process at multiple organizational 

levels in the high-risk medical device industry: plant-level causes, recall decision-making, and 

causes and effects of firm and regulator responsiveness within the recall event. 

 First, I study the relationship between Food and Drug Administration (FDA) plant 

inspections and future recalls. Using a 7-year panel dataset and recurrent event Cox proportional 

hazard and propensity score matching models, I find that adverse plant inspection outcomes serve 

as warning signs for future recalls. I incorporate FDA investigator experience to identify reasons 

for, and effects of, investigator complacency in repeated plant inspections. Repeated visits to the 

same site by an inspector increases the recall risk and also reduces the predictability of inspection 

outcomes as a leading indicator of future recalls. FDA investigator rotation is shown to be an 

effective solution to compensate for investigator complacency. 

 Second, I explore behavioral factors that influence managers’ decision to recall. Recall 

guidance provided by the FDA allows for broad managerial interpretation so it is crucial to study 

which factors influence managers to choose to recall. Using actual industry managers with recall 

experience in a controlled experiment, I find that product defects which are undetectable to 

physician customers pre-use are more likely to lead to a recall than detectable ones. When managers 

have a deeper understanding about the root cause of a defect, they are also more likely to recall. I 

also study individual dispositional factors unique to each manager, and surprisingly find that the 

level of cognitive reflection, as measured by the Cognitive Reflection Test (CRT), is the most 

important predictor of a recall decision in the experiment.  

 Finally, I study firm and regulator recall responsiveness. Responsiveness is critical in this 

domain: the longer a faulty medical device remains on the marketplace, the more consumers are at 

risk. Using an 11-year panel dataset with time-stamps for over 4,000 recalls, and multiple hazard 

and fixed effects panel models, I find that higher recall severity leads to slower firm and faster FDA 

responsiveness. However, taking longer to close a recall reduces a firm’s future recalls, and this 

may be attributed to learning mechanisms. FDA response times also reduce future recalls. 
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Chapter 1:  
 
Dissertation Overview 

 

Producing and delivering high quality products that are safe for consumers’ use are critical 

to a firm’s survival and growth. To ensure product safety, firms allocate considerable resources to 

develop and implement sophisticated quality control systems. Federal agencies monitor and 

regulate firms’ design and manufacturing processes to ensure products meet quality conformance 

standards. Despite these efforts, product recalls have increased significantly across all regulated 

industries which are subject to product recall laws and requirements. In the United States, recalled 

products fall into five main categories: consumer products, motor vehicles, food, pharmaceuticals 

and medical devices. These five categories are monitored by three regulatory bodies: Consumer 

Product Safety Commission (CPSC), National Highway Traffic and Safety Administration 

(NHTSA), and the Food and Drug Administration (FDA)1. According to the CPSC, approximately 

six recalls occur per day across all types of consumer products, and the number of consumer product 

recalls is on the rise.2 Similarly, NHTSA reports the average number of auto recalls per million 

registered U.S. vehicles has risen steadily, from 3.10 in 1980s to 8.25 in the 1990s and 11.79 

between 2000 and 2010. This is significant, because each auto recall is associated with a potential 

economic consequence of $20 million or more3. Equally significant, five of the top ten largest auto 

recalls in U.S. history occurred in the last ten years. The medical device marketplace is not immune 

to this trend. Between 2003 and 2012, there was a 97% increase in the annual number of medical 

device recalls.4 This number is staggering when one considers that there are thousands of devices 

and customers’ lives that are often affected by just one medical device recall. Prior literature 

annotated in Table 1.1, suggests that each recall is associated with considerable costs for a company 

and its customers, including occasional loss of life. 

Product recalls have been explicitly studied in marketing, economics, strategy, and 

operations management. A comprehensive review of this literature shows that the dominant focus 

                                                        
1 http://www.recalls.gov/ 
2 www.cpsc.gov;http://usatoday30.usatoday.com/news/nation/story/2012-06-08/product-recall-surge-consumer-fatigue/55466398/1 
3 Jarrell and Peltzman (1985) estimate an average per car recall cost of $200. This cost includes repair, replacement, and lost sales. An   
average of 100,000 cars were involved in each auto recall from 1980 to 2013. http://www-odi.nhtsa.dot.gov/downloads/. 
4 http:// www.fda.gov/ downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/ CDRH/CDRHTransparency/ 
UCM388442.pdf 

http://www.cpsc.gov/
http://www-odi.nhtsa.dot.gov/downloads/
http://www.fda.gov/
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in most of the existing research has been on the consequences of product recalls in which its impact 

on firms’ financial and market performance are examined (Table 1.1). These studies demonstrate 

that product recalls are negatively associated with various measures of firm performance. At the 

same time, they point to the paucity of studies examining causes of product recalls. Two noteworthy 

exceptions to “consequence-focused” research include Haunschild and Rhee (2004) and Thirumalai 

and Sinha (2011), both of which model product recalls as a dependent variable. While Haunschild 

and Rhee (2004) examine whether the initiator of a past product recall (firm or a regulatory agency) 

impacts the likelihood of future recalls, Thirumalai and Sinha (2011) analyze the impact of a firm’s 

R&D focus on future recalls. These two studies represent a first step in highlighting drivers of 

product recalls, but neither study focuses on operational drivers of product recalls—they 

conceptualize the causes at a higher level of analysis.  

However, understanding why recalls occur is the necessary first step towards learning how 

to prevent them from occurring. The primary objective of my dissertation is to identify 

organizational, operational and behavioral causes of product recalls. In investigating them, I focus 

on two primary participants in the recall process: the government regulator and the firm manager. 

Regulators approve new products, inspect manufacturing facilities, and establish product quality 

guidelines, in an effort to protect the public from harmful product defects. Managers allocate 

resources to solve problems, strive to improve future product quality by learning from past mistakes, 

and when warranted, actually make the decision to recall. Figure 1.1 illustrates the different phases 

in the life cycle of a recall. It begins with the underlying causes of a recall and concludes with the 

eventual recovery after a recall has been undertaken and its consequence has been incurred. In my 

dissertation, I focus on the first three steps of the recall life cycle. Consequently, my dissertation 

consists of three chapters, each corresponding to the three phases of the recall process. Specifically, 

each chapter addresses a distinct aspect of the recall process by adopting a unique vantage point of 

an organizational entity. Thus, I examine 1) causes of recalls in the production plant, 2) behavioral 

factors influencing the managerial recall decision-making process, and 3) firm and regulatory 

responsiveness during the recall event. Each chapter is described briefly below. 
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Figure 1.1 Dissertation Structure 
 

 
 
 
 
 

 

 

 

 

In chapter two, “Inspector Experience and Product Recalls in the Medical Device Industry,” 

I address an important quality control mechanism in global supply chains, that of plant inspections. 

In this chapter, I answer the questions: 1) How effective are Food and Drug Administration (FDA) 

plant quality inspections in predicting and preventing future medical device recalls and 2) how does 

inspector experience impact this predictability? FDA plant inspections are intended to assess the 

design, supplier development, manufacturing, and distribution processes associated with all 

products built at the plant. The FDA uses these inspections as the primary means of assessing 

quality in the medical device industry. It is therefore crucial to examine the validity of these 

inspections as it pertains to future medical device product quality. Because the FDA frequently uses 

the same investigator at a given plant, I also examine the effects of investigator experience.  

To study these questions, I draw upon learning and complacency literature streams, compile 

a unique FDA inspection dataset, and a recurrent event, conditional gap-time Cox proportional 

hazard model. Through rigorous analyses and multiple robustness checks, I empirically 

demonstrate that plant inspection outcomes serve as reliable predictors of future product recalls. 

This is the first study, to my knowledge, to empirically associate plant inspections with future plant 

quality, and highlights an important mechanism to economically control quality in the context of 

global supply chains. However, I find that inspection predictability and future recall risks are 

negatively impacted when the FDA reassigns an investigator to the same plant (e.g., increasing 

specific experience of the investigator). Independent of the inspection outcome, the hazard of a 

recall at a plant increases by 48% the second time an investigator inspects a plant, and by 63% with 

the third visit. Repeat visits by the same investigator also reduces the ability of the inspection 
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outcome to predict future recalls. By the investigator’s second visit to the plant, inspection 

outcomes no longer predict future recalls. Using a propensity score matching model to empirically 

demonstrate the benefits of investigator rotation, I show that rotating investigators among different 

plants and restricting their visit to the same plant to one time would reduce future recalls. 

Specifically, the rotational policy would lead to a reduction of over 900 medical device recalls in a 

7-year period. While the policy is associated with an additional annual cost of approximately 

$800,000 to the government, it is a negligible amount relative to the increase in consumer welfare. 

This recommendation is currently under consideration by the FDA. 

Once a product defect is released into the market place, managers are faced with the decision 

of whether to allow potentially harmful products to remain in the market, or to initiate an expensive 

product recall. In chapter three, titled, “The Decision to Recall: A Behavioral Investigation in the 

Medical Device Industry”, I study the following question: What behavioral factors influence 

managers’ decision to recall a product? FDA’s official recall policy states that companies are 

required to recall products that “present a risk of injury or gross deception or are otherwise 

defective.” 5  Medical device recalls are almost always initiated by company managers, not 

mandated by regulators, and managers have great leeway in interpreting FDA recall regulations.6 

This makes it vital to understand what factors effect managers in this decision.  

Prior behavioral research indicates the importance of examining not only factors that relate 

to the specific situation under consideration, but also those that are intrinsic to the decision-maker. 

Using a unique behavioral experiment related to the managerial recall decision, I investigate two 

types of managerial decision-making factors in this decision: situational and dispositional. Because 

the product recall decision is highly contextualized, I use actual industry managers from one of the 

world’s largest medical device companies as subjects for the experiment. Two situational factors 

are significantly related to the likelihood of a recall decision: the level of detectability by the 

physician of the product defect, and the managerial understanding of the root cause of the product 

defect. Managers are 48% more likely to recall when the defect is undetectable to the physician 

before using the product and 65% more likely to recall when the root cause of the underlying defect 

is identified. A third situational factor, the product quality concern of an influential individual 

physician customer, does not impact the recall decision. I use several dispositional characteristics 

of the manager to investigate their impact on the recall decision, including a well-established 

                                                        
5 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/RecallsCorrectionsAndRemovals/ 
6 Ibid 
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Cognitive Reflection Test (CRT, Frederick, 2005). The CRT measures how much a decision-maker 

reflects before making a decision. Higher CRT equates to more reflection, while lower CRT relates 

to less reflection and more intuition in decision-making. High CRT managers are 70% less likely 

to decide to recall than low CRT managers, independent of the experimental factors. Additionally, 

high CRT managers are significantly influenced by two of the situational factors in the experiment, 

while low CRT managers are only influenced by their individual dispositional characteristics such 

as gender (males are 96% less likely to recall than females) and functional area (quality department 

personnel are 98% less likely to recall than non-quality personnel). To my knowledge, this is the 

first study to investigate the recall decision-making process using actual industry managers in an 

experimental setting. This experiment exposes possible situational and dispositional factors that 

may be influential in this decision, even though the FDA does not explicitly delineate them as 

relevant recall criteria. 

Subsequent to the recall decision, managers must expend significant resources to identify 

root cause and undertake corrective action related to the product defect, both to resolve the current 

problem and to avoid similar problems in the future. In the medical device industry, the individual 

steps constituting the recall process are very well-specified and clearly laid out, but the FDA does 

not formally mandate how much time should be spent on any one step. Intuitively, taking a long 

time between any two steps seems undesirable, yet anecdotal evidence suggests that there is 

considerable variation in the time taken to execute the recall process. In chapter four, titled: “Slow 

or Fast: An Empirical Examination of the Recall Responsiveness Dilemma,” I address causes and 

effects of responsiveness in the recall process, and study two related research questions: 1) What 

leads to quick recall response times for firms and regulators, and 2) how does such responsiveness 

impact future recall rates? A clear understanding of what leads to fast recall response times and 

how response times impact future recalls is a crucial step towards determining whether expedience 

is always desirable if reducing future recalls is the objective.  

I decompose the medical device product recall process into three time-phases (time-to-open, 

time-to-classify, time-to-close) using a proprietary dataset provided by the FDA, and multiple 

hazard and fixed effects panel data models. Consistent with prospect theory (Kahneman and 

Tversky, 1979), I demonstrate that managers are risk-seeking in losses, and unfortunately delay 

recalling the most serious quality problems, precisely those problems which should lead to the 

fastest response due to their potential negative impact on customer health and safety. In other words, 

more severe recalls have a longer time-to-open than less severe recalls. Managers take 20% longer 
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to open a more severe recall (an additional 10 days) compared to a less severe recall. However, 

contrary to prospect theory, more severe recalls also have a longer time-to-close than less severe 

recalls. Managers take 23% more time-to-close more several recalls (an additional 76 days) than 

less severe recalls. The FDA is also observed to respond the fastest to the most serious problems, 

as they classify the most severe recalls over 500% faster than the least severe recalls. I also use a 

fixed effects negative binomial panel model to determine the effects that these different time phases 

(time-to-open, -close and -classify) have upon future recall occurrences at each medical device 

plant monitored by the FDA. I find that plants that move slower to close a recall, during which time 

plant personnel identify root cause and corrective action for the underlying defect, experience fewer 

future recalls. For every additional four months taken in the time-to-close a recall (a one half 

standard deviation from the mean time-to-close), plants experience one fewer recall across the time 

period in the panel. The slower speed may enable plants to learn from prior quality problems and 

apply this learning to future products. No association is observed between time-to-open and future 

recalls. Finally, faster FDA time-to-classify leads to fewer future recalls, but only for the least 

severe recall types. 

 As a set, this dissertation research provides a comprehensive investigation of the critical 

phases of the recall process using multiple methods (empirical and behavioral) and perspectives 

(plant, manager and regulator). The overarching goal of this research is to deepen recall 

understanding, and ideally lead to recall reduction and prevention. I empirically demonstrate 

leading indicators of product quality problems that can signal future medical device recalls, 

behavioral factors that contribute to the managerial recall decision, and possible learning 

mechanisms active within the recall event which can contribute to future recall reduction. 
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     Table 1.1 Relevant Recall Literature 

Article Industry 
sector Research Focus Independent 

variables 
Recall 
usea 

Dependent 
variables Results 

Jarrell & 
Peltzman 
(1985) 

Pharma; 
Auto 

Impact of product recalls on 
shareholder wealth; Compare 
destruction of wealth to the 

recall costs for the firm 

Recall event 
 IV 

Stock 
market 
returns 

Loss to shareholder wealth is substantially greater than the costs 
incurred by the firms. 

Bromiley & 
Marcus 
(1989) 

Auto Stock market reaction to 
product recalls Recall event  IV 

Stock 
market 
returns 

Stock market returns do not vary significantly with product recall 
announcements; they are not an effective deterrent to dubious 

corporate behavior. 
Davidson & 
Worrell 
(1992) 

Auto  Stock market reaction to 
product recalls  Recall event  IV 

Stock 
market 
returns 

Product recalls are negatively associated with stock market returns. 
The effect is stronger when products are replaced rather than 

repaired. 

Archer &  
Weslowski 
(1996) 

Auto 
Impact of quality and service 

incidents upon  customer 
loyalty 

Negative quality 
and service 

incidents including 
recalls 

 

IV Customer 
loyalty Product recalls do not impact customer loyalty to manufacturer 

Haunschild 
& Rhee 
(2004) 

Auto 
Firm learning following 

voluntary and involuntary 
recalls 

No. of recalls IV, 
DV 

# of 
recalls  

Voluntary recalls result in more learning than mandated recalls 
when learning is measured as reduction in subsequent involuntary 

recalls. 

Rhee & 
Haunschild 
(2006) 

Auto 
Impact of organizational 

reputation on market share 
following a recall 

No. of recalls; 
organizational 

reputation; vehicle 
characteristics 

 

IV Market 
Share 

Positive organizational reputation is associated with more negative 
market share reactions to product recalls. Having few substitutes for 

a product buffers this reaction. 

Cheah et al. 
(2007) Pharma 

Impact of corporate social 
responsibility (CSR) 

practices on stock market 
reaction to product recalls 

Recall event IV 
Stock 
market 
returns 

Product recalls are negatively associated with stock market returns. 
The effect is dependent upon geography, recall severity, and CSR 

practices. 

Chen et al. 
(2009) 

Consumer
product 

Impact of recall strategy 
(proactive vs. passive) on 
stock market reaction to 

product recalls 

Recall event IV 
Stock 
market 
returns 

Proactive recalls are associated with more negative stock market 
reactions than passive recalls.  

Thirumalai 
& Sinha 
(2011) 

Medical 
device 

Stock market reaction to 
product recalls and sources 

of recalls 

Recall event; recall 
class & experience; 
product scope; R&D 

intensity 

IV, 
DV 

Stock 
market 
returns 

Market penalties for medical device recalls are not significant. R&D 
focus increases likelihood of recalls. 

Hora et al. 
(2011) Toy 

Impact of recall strategy, 
product defect and supply 

chain entity on time-to-recall 

Recall strategy; 
source of defect; 

supply chain entity  
DV Time-to-

recall  
Preventive recall strategy, design defects & manufacturers are 

associated with longer time-to-recall. 

         a: IV = Independent Variable, DV = Dependent Variable. 
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Chapter 2:  
 
Inspector Experience and Product Recalls in the 
Medical Device Industry  
 

2.1 Introduction 

Plant inspections are an essential instrument for managing quality in globally dispersed 

supply chains. Whether it is international firms auditing the quality of their own plants across the 

globe, or customers auditing the plants of their upstream partners, or governments auditing the 

plants that deliver regulated goods into distribution channels, assessing the state of quality of a 

plant is common practice. In supply chains with long lead times, firms cannot simply rely on 

inspecting incoming materials, nor can they realistically perform inspections and tests on all 

finished products. Firms need to assess and ensure quality performance at the source, particularly 

since long lead times lead to delayed feedback and tremendous uncertainty about the product 

already manufactured and shipped if defects are spotted among inbound supplies (Roth et al., 2008). 

In regulated markets, governments cannot feasibly sample every manufactured product before 

releasing it to customers, and instead have to rely upon the plant’s quality system in order to prevent 

defective products from being shipped. Regulators therefore frequently assess the quality systems 

in place via plant inspections.  

Research demonstrating the validity of plant inspections as accurate predictors of future 

quality performance is limited. Prior research advocates the use of plant inspections instead of 

product inspections (Deming, 1982) in an effort to improve quality processes and design and build 

quality into the product instead of inspecting quality into the product. This recommendation is 

based on the notion that plant inspections serve as reliable and more sensible, cost effective 

substitutes for product inspections (Concannon, 1989). In spite of this theoretical importance, there 

are no empirical studies to our knowledge which confirm the relationship between plant inspections 

and future product quality from the plant (Mayer et al., 2004; Handley and Gray, 2013). We 

examine this relationship in our current study. 

 We also examine whether inspector experience influences the predictive nature of audit 

outcomes by making inspections more or less informative. The literature on learning curves 
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indicates that general experience should lead to improved performance (Argote and Epple, 1990) 

and therefore more informative inspections. In contrast, research in accounting, financial, and 

safety audits demonstrates that inspectors can become complacent and less objective with site-

specific experience (Bardach and Kagan, 2002). Given these opposing views, we empirically 

examine whether inspector experience creates more or less informative plant inspections. In line 

with the existing experience curve literature (Huckman and Pisano 2006), we differentiate between 

general experience (gained at all sites) and site-specific experience (gained at one site) and analyze 

whether these different forms of experience moderate the predictive association between inspection 

outcomes and future recalls, as well as whether experience directly leads to a change in the hazard 

of a future recall. 

We study plant inspections in the context of the medical device industry. The Food and 

Drug Administration (FDA) regularly inspects medical device manufacturing plants, normally on 

a two-year cycle, and it is quite common for FDA investigators (FDA term for inspectors) to visit 

the same plant on multiple occasions. The intent of these inspections is twofold: to holistically 

assess the design, supplier development, manufacturing, and distribution processes associated with 

all products built at the plant, and to provide guidance to managers related to quality improvements. 

The FDA uses these inspections as the primary means of assessing, managing and enforcing quality 

in the high-risk medical device industry. Therefore, it is crucial to appraise the validity of these 

inspections as it pertains to future medical device product quality and to examine the possible 

effects of investigator experience. 

One important manifestation of the absence of product quality in the medical device 

industry is “product recalls.” Product recalls occur when a product is deemed unfit for customer 

use or conformance quality is lower than required (Garvin, 1987; Juran 1999). Whether the defect 

that leads to a recall originates from design, manufacturing, or within a supplier’s processes, recalls 

result from a breach in the quality management system. Efforts to provide early detection or even 

prevention of recalls are in great need as the recall rates rise across many industries. For example, 

automotive recalls increased by 75% from 1980 to 20107, pharmaceutical recalls have increased by 

77% from 2004 to 2014, and medical device recalls have risen almost 100% from 2003 to 2012.8 

If inspections consistently fail to detect the underlying problems, the efficacy of the inspection 

process itself is questionable.  

                                                        
7 www.nhtsa.gov 
8 www.fda.gov 
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Consequently, we address three research questions in this study: 1) Do plant inspection 

outcomes serve as reliable predictors of future recall hazards, 2) Does investigator experience affect 

how well plant inspections predict future recalls, and 3) Independent of the inspection outcome, 

does investigator experience directly affect the hazard of a future recall. Using secondary data 

collected from several freedom of information act (FOIA) requests to the FDA over a 7-year period, 

and a recurrent event Cox Proportional Hazard model, we find that a favorable inspection outcome 

indicates a lower hazard of a future recall than an adverse inspection outcome does. While general 

experience has no main effect on the hazard of a recall or on the relationship between inspection 

outcomes and recalls, specific experience influences both whether inspection outcomes predict 

recalls as well as the overall hazard of recalls. The first time an investigator visits a site, their 

inspection outcomes are highly predictive of future recalls. In comparison to an “adverse” outcome, 

a “favorable” inspection outcome is associated with a 34% decrease in future recalls while an 

“adverse” inspection outcome is associated with a 52% increase. This relationship however 

diminishes very quickly. From the second inspection on, each additional visit by the same inspector 

increases the hazard of a recall. There is a 48% recall hazard increase on the second visit and a 63% 

recall hazard increase on the third visit. Additionally, from the third inspection onward, the 

inspection outcome does not effectively predict the future recall hazard. 

These findings have practical implications for the FDA and industry managers, and inform 

the academic literature on quality and experience. In practice, the FDA may be able to reduce the 

hazard of medical device recalls by instituting investigator rotation between plants (a 

recommendation currently under consideration by the FDA). Similar implications may hold for 

practicing managers in private supply chains monitoring their upstream partners through plant 

inspections. Theoretically, our paper is the first, to our knowledge, to use archival data to 

demonstrate the relationship between plant inspections and future quality performance, indicating 

support for past theoretical quality research which has advocated the value of such inspections 

(Deming, 1982). We also bolster support for previous experience research by emphasizing the 

importance of distinguishing between specific and general experience (Huckman and Pisano, 2006) 

and demonstrating their differing impact on performance. 

2.2 Research Context 

A breakdown of product quality and the resulting recall in the medical device industry can 
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be life threatening, or can interfere with the successful treatment of patients. From 2003 to 2012, 

there was a 97% increase in the annual number of medical device recalls.9 This figure is staggering 

when one considers that just one recall might affect thousands of devices and customers’ lives. A 

medical device recall is defined by the FDA as, “a firm’s removal or correction of a marketed 

product that FDA considers to be in violation of the laws it administers. A recall is a voluntary 

action that takes place because manufacturers and distributors carry out their responsibility to 

protect the public health and well-being from products that present a risk of injury or gross 

deception or are otherwise defective.”10  

The FDA plant inspection process is a comprehensive top-down review of the plant’s 

quality management system and the constituent sub-systems. The review is conducted in adherence 

to the process described in the Quality System Inspection Techniques (QSIT) guide that an FDA 

investigator follows when inspecting a medical device manufacturing plant. An investigator may 

review any of the requirements contained within Part 820 of the U.S. Code of Federal Regulations 

Title 21 during the plant visit. These regulations apply to the “design, manufacture, packaging, 

labeling, storage, installation, and servicing of all finished devices intended for human use.” 

(21CFR 820.1). During the inspection, the primary goal for the investigator is to “evaluate whether 

management with executive responsibility ensures that an adequate and effective quality system 

has been established and maintained.”11 It is important to note that these inspections are both 

intended to and capable of detecting product defects throughout the entire product realization 

process (e.g., from design to manufacturing to distribution). For example, an investigator may target 

the product design validation and change processes. In doing so, an investigator may identify a 

design validation step that was incorrectly implemented during product design which may serve as 

a warning signal for a failure in the market. Manufacturing quality control processes are also 

audited. Finding a gap in such a process may signal manufacturing defects that could be escaping 

to the customer undetected and possibly lead to a recall. Supplier development, product labeling, 

and distribution processes are similarly targeted. Investigators have leeway to perform the 

inspection as they deem appropriate, though the intent is to review aspects of each main function 

of a site during the inspection. The FDA publishes a frequency count of inspection concerns 

unearthed by inspectors during audits on their website. In 2014, the top 20 categories included 

                                                        
9http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/UCM3
88442.pdf 
10 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/RecallsCorrectionsAndRemovals 
11 http://www.fda.gov/ICECI/Inspections/InspectionGuides/ucm170207.htm#page1 

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/RecallsCorrectionsAndRemovals/
http://www.fda.gov/ICECI/Inspections/InspectionGuides/ucm170207.htm#page1
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manufacturing (lack of procedures for quality audits; procedures for training not established), 

purchasing (lack of purchasing controls) as well as design (lack of design control procedures, lack 

of procedures for design validation) related concerns, highlighting the holistic nature of this 

inspection process.12 

The FDA uses three types of inspection categories: surveillance, compliance and complaint. 

Surveillance inspections occur regularly (approximately every two years) in order to determine the 

overall state of quality an establishment maintains. Compliance inspections are more narrowly 

targeted inspections, which normally transpire after major process changes such as a new 

manufacturing plant start-up, and complaint inspections occur because of one or more serious 

customer complaints. Upon completion, the information gathered by the FDA investigator leads to 

a recommended quality rating of the plant. Three quality levels can be assigned following an 

inspection. These are: No Action Indicated (NAI-highest quality score), Voluntary Action Indicated 

(VAI-moderate quality score), and Official Action Indicated (OAI-poorest quality score). If a plant 

receives a NAI, there is no official follow up from the FDA and no written FDA recommendations 

are given. Investigators provide voluntary written recommendations when assigning a VAI score, 

though these recommendations are not mandatory. An OAI, on the other hand, requires official 

follow up from the FDA, and denotes that significant quality system gaps were identified during 

the inspection. Thus, NAI is the highest quality score that a plant can receive (i.e. a favorable 

outcome), followed by a VAI and an OAI, which is the worst score possible (i.e. an adverse 

outcome).  

During our extensive interviews with senior administrators at the FDA’s Center for Device 

and Radiological Health, we learned that the timing of a plant’s inspection is guided by the goal to 

inspect each plant once every two years, and the inspected plant is selected at random from the set 

of plants that need to be inspected at that time. During our conversations, we were also informed 

that the FDA generally reassigns investigators to plants they have inspected in the past to reduce 

investigator set-up costs and improve the inspection process. We were told that the FDA does not 

have a policy in place to rotate investigators among different plants or to systematically re-assign 

investigators to new plants, and most rotational changes that do occur are in response to investigator 

promotions, retirements, or new hires. In general, investigator assignment to plants is driven by 

geographic proximity between investigator and plant locations, and investigator rotation among 

                                                        
12http://www.fda.gov/ICECI/Inspections/ucm250720.htm 

http://www.fda.gov/ICECI/Inspections/ucm250720.htm
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plants is largely due to exogenous reasons. Due to the lack of immediate feedback following an 

inspection outcome, it is challenging for the FDA to determine the accuracy (i.e. the information 

content) of their inspections. New assignments of inspectors are thus in general not driven by job 

performance. 

2.3 Theory and Hypotheses: Inspection Outcomes and Future Recalls 

Using inspections to monitor product and process standards is a well-established practice. 

Inspections are regularly conducted by firms both at their own manufacturing facilities as well as 

at their upstream supplier locations to ensure that products and processes meet established 

conformance standards. A key concept we use in our research is the information content of the 

outcomes of a plant inspection. An inspection outcome contains information if it adequately 

identifies deficiencies in the quality management system of a plant, or adequately assesses that no 

deficiencies are present. From an information theoretic perspective, information content of the 

inspection outcome is measured by how well the inspection outcome predicts future quality 

performance (e.g., recalls). Inspection outcomes that contain information should trigger 

improvement processes and predict future performance, whereas uninformative inspections should 

do neither. 

Although Deming (1982) avidly advocates using supplier facility inspections as a means 

to improve quality at the source over wholesale supply material inspections, academic research has 

not systematically examined the influence of different plant inspection regimes on quality outcomes 

using objective and large scale archival datasets. Handley and Gray (2013) note that the connection 

between plant inspections and future quality outcomes is still under-investigated. This dearth of 

empirical research may be due to the managerial ambivalence towards plant inspections as an 

effective means to control quality at the upstream suppliers. In determining whether managers 

prefer inspections at the upstream supplier or inspections of the incoming material, Mayer et al., 

(2004) summarized managerial belief as “inspections (of the plant) do not guarantee delivery of the 

desired quality level but such inspections…increase the probability that inputs will meet the buyer’s 

desired quality level.” Using primary data collected with a survey, Handley and Gray (2013) 

examined the relationship between plant audits and perceived relative plant quality, and found that 

the use of plant inspections of a supplier’s facility by the purchasing firm increases the supplier’s 

perceived relative importance of quality. 
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The quality outcome of a process is a function of the underlying effectiveness of its quality 

management system; weak quality systems will increase the risk that poor quality product reaches 

the customer, whereas effective quality systems will prevent potential conformance problems and 

root them out before the product ships to the market. FDA plant inspections intentionally assess the 

effectiveness of the underlying quality management system. Intuitively, we expect that if plant 

inspection outcomes contain information, adverse inspection outcomes relate to a high hazard of a 

future recall at a plant, whereas favorable inspection outcomes indicate a low hazard of a recall. 

Importantly, we expect that this relationship is not causal. Inspection outcomes measure the 

effectiveness of the underlying quality system, but adverse inspection outcomes do not cause recalls. 

While a causal relationship between adverse inspection outcomes and closely following recalls may 

exist for a small minority of recalls which occur during or immediately following an inspection, 

our analysis will explicitly exclude recalls of this type, and examine only recalls that are distal from 

an inspection. We thus hypothesize: 

 

HYPOTHESIS 1: FDA inspections contain information about future recalls such that 
favorable inspection outcomes are associated with a lower recall hazard than adverse 
inspection outcomes. 
 

From a counter perspective, FDA investigators who are faced with an adverse inspection 

outcome generate quality system improvement recommendations. Assuming that these 

recommendations are valuable, and that plants implement them, the future quality state of the plant 

should improve after such an outcome. This line of reasoning, a view espoused within the FDA, 

could lead to the expectation that an adverse inspection outcome actually lowers the future recall 

hazard. While this argument contains a kernel of truth, it is incomplete, and does not alter the logic 

underlying Hypothesis 1. Improvement processes take time to lower the recall risk of a weak quality 

management system. There is also considerable evidence to show that improvement suggestions 

made from parties outside the firm are not always implemented (Muthunalingam et al., 2013; 

Dhanorkar, et al., 2014). Further, using data from the pharmaceutical industry, Anand et al. (2012) 

show that while plants improve following an adverse inspection outcome, receiving a similar score 

in a future inspection remains highly likely. Macher et al. (2011) find similar results. As suggested 

by Anand et al. (2012), organizational inertia (Hannan and Freeman, 1984; Nelson and Winter, 

1982) may prevent firms from immediately making significant changes to a plant’s quality system. 

There is, however, an important relationship between inspection outcomes and paths to 
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improvement, which we illustrate in a stylized way in Figure 2.1. 

 

Figure 2.1 High and Low Inspection Information 

 

 
 

 

Figure 2.1A presents the evolution of a quality management system after receiving an 

informative inspection. The true recall hazard associated with effective and weak quality 

management systems is shown by the dotted lines. If the inspection is informative, its outcome 

measures the effectiveness of the quality management system, and thus the estimated recall hazard 

is similar to the true recall hazard. This correspondence is indicated by the dots in the figure at time 

t0 lying on the dotted lines of the associated quality management system hazards. In the case of a 

favorable inspection outcome, no improvement process is kicked off by the inspection; the recall 

hazard of effective quality management systems is unaltered by the inspection. In the case of an 

adverse inspection outcome, the feedback from the inspection outcome will trigger an improvement 

process. For the reasons discussed in the previous paragraph, this improvement process will be 

incomplete and take time, but it ultimately leads to a reduction in the recall hazard of weak quality 

systems. Overall, the recall hazard of weak quality systems remains above the recall hazard of 

effective quality systems for a foreseeable period of time. 

Figure 2.1B depicts the evolution of a quality system after receiving an uninformative 
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inspection. The estimated recall hazards of adverse and favorable inspection outcomes are tightly 

clustered together, and far from the true recall hazards of weak/effective quality management 

systems (i.e. the dots at time t0 are far from the dotted lines). Due to the low information content of 

the inspection outcome, no improvement processes are triggered. If the inspection outcome is 

adverse, the feedback from the inspector is unlikely to lead to a real path for change, even if the 

underlying quality system is weak. Effective quality management systems may even deteriorate as 

managers may focus their attention on irrelevant tasks, fixing unbroken processes. 

In summary, quality system changes following adverse inspection outcomes, for both 

informative and uninformative inspections, are unlikely to offset the logic underlying Hypothesis 

1. However, one can see from Figure 2.1 that informative inspections lead to a much lower hazard 

over time than uninformative inspections, since they trigger valid improvement processes and avoid 

the unnecessary diversion of managerial attention. We further develop this idea in Section 2.5. 

2.4 Investigator Experience and Inspection Information 

Hypothesis 1 relies on the concept that plant quality inspections contain information. 

Whether there is a link between plant inspection outcomes and future recalls therefore depends on 

the degree to which investigators adequately assess the state of the quality management system of 

a site. Assessing the investigator efficacy at doing so is therefore paramount to better understand 

the relationship between plant inspections and recalls. Past FDA inspection research identifies 

investigator heterogeneity as an important factor in understanding plant inspection outcomes 

(Macher et al., 2011) and notes investigator experience as a main driver of this heterogeneity. In 

practice, websites have appeared that provide information on investigator characteristics and 

experience (www.fdazilla.com), further supporting the idea that attributes of the investigator matter 

and influence the inspection outcome. 

We distinguish between general and site-specific investigator experience. This distinction 

follows Huckman and Pisano (2006) who found that cardiac surgeons who perform surgeries at one 

hospital had significantly higher performance (lower patient mortality) compared to surgeons who 

split their time between hospitals. They posited that the improved performance from hospital-

specific experience results from the surgeon’s familiarity with the focal hospital routines, resources 

and surgical team members. In the current study, FDA investigators can acquire similar levels of 

experience by inspecting one plant several times (specific experience) or inspecting multiple 

http://www.fdazilla.com/
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different plants (general experience). 

We further differentiate between two effects of experience: learning and complacency. That 

experience with a task leads to learning is a well-established phenomenon (Wright 1936), and is 

formalized under the learning curve umbrella: experience improves individual, team, and 

organizational performance (Argote, 2013). This phenomenon has received significant empirical 

support in diverse contexts. Nonetheless, empirical results from the financial auditing, regulatory 

and safety inspection literature suggest that learning can be dominated by complacency (Macher et 

al., 2011; Moore et al., 2006; Lemley and Sampat, 2012).  

 
Learning and the Upside of Investigator Experience 
The learning effects of site-specific experience observed by Huckman and Pisano (2006) are related 

to hospital specific familiarity, allowing the surgeon to understand specific personnel, activities, 

expectations, and practices that facilitate a more effective surgical procedure. This positive 

association between site-specific experience and performance is also seen in professional athletic 

teams (Berman et al., 2002), flight deck teams on aircraft carriers (Weick and Roberts, 1993), 

financial analysis (Groysberg et al., 2008) and software development (Huckman et al., 2009). In 

the literature on work teams, this phenomenon is often captured under “transactive memory 

systems”, where individual group members become familiar with ‘who knows what’ within a team, 

making groups more effective (Lewis et al., 2005). In summary, a certain amount of tacit knowledge 

is honed as specific experience increases, which in turn impacts performance at the site of that 

experience. In our context of FDA inspections, the more familiar the investigator is with the facility, 

the more intimate they become with processes, products, and people which may enable a more 

robust ability to capture plant inadequacies and quality risks. This effect would lead to a more 

informative inspection outcome. 

 

HYPOTHESIS 2A: Specific inspection experience increases the information content of 
inspections such that inspection outcomes are more predictive of future recalls with 
increasing specific experience  
 

General experience in performing plant inspections may have similar effects, though for 

different reasons. Costs, completion time, and quality, among other key measures, improve with 

repetition in manufacturing (Wright, 1936; Zimmerman, 1982; Hirschmann, 1964) healthcare 

(Kelsey et al., 1984; Hannan et al., 1991; Reagans et al., 2005) and other service industries (Boone 
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et al., 2008; Darr et al., 1995). General experience generates learning (Yelle, 1979; Argote and 

Epple, 1990), which enhances task outcomes. FDA investigators who develop extensive general 

experience are likely to observe many different plants over-time, which represent not only “best 

practices” when it comes to quality processes, but also “worst offenders”. This experience in 

observing multiple plants at various stages of the quality performance spectrum may enable the 

investigator to more accurately identify problems at a plant and allow their inspection results to be 

more predictive. Further, being exposed to different plants represents a limited form of task variety 

for the inspector. While processes in the industry are to some degree standardized due to the 

regulatory nature, differences between plants do exist, and such limited variety can be beneficial 

for overall learning outcomes (Narayanan et al., 2009). We thus propose the following hypothesis: 

 

HYPOTHESIS 3A: General inspection experience increases the information content of 
inspections such that inspection outcomes are more predictive of future recalls with 
increasing general experience  
 

Complacency and the Downside of Investigator Experience 
Evidence for learning through experience primarily exists in the context of individuals, teams 

or organizations executing some specific task. Contextually, learning may not be as dominant 

within an auditing or inspection setting such as ours. Prior literature identifies possible negative 

aspects of experience in financial audits (Moore et al., 2006; Deis and Giroux, 1992; Carey and 

Simnett, 2006; Davis et al., 2009), plant safety audits (Short et al., 2013), and regulatory audits 

(Salant, 1995). 

The financial auditing literature reveals that a primary source of complacency and reduced 

inspection objectivity is the structure of the inspection scheme; investigators are paid by the firms 

they audit (Moore et al., 2006). Demonstrating a reduction in inspection accuracy and objectivity 

with more specific experience, in the absence of financial incentives, may explain the presence of 

this phenomenon in other settings and reveal an important additional mechanism underlying it. In 

supply chain plant audits, when the auditing party has no financial incentive to bias their score 

towards high quality, complacency and reduced inspection performance may arise from the stale 

and routine nature of inspecting the same location repeatedly, from investigator fatigue or lack of 

interest, or from developing overly friendly relationships with auditees.  

Short et al. (2013) use plant audit data to demonstrate that when an audit team includes 

members who have visited the factory in the past, the team is less likely to issue violations. The 
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authors argue that this effect may be caused not only by undue familiarity, but also by cognitive 

constraints. Auditors are imbued with a certain amount of tacit knowledge that bounds their ability 

to identify violations not in their experience history. Once an auditor has been through a facility 

and identified violations based on their area of expertise, they are less likely to find additional 

violations on return visits because they will continue to be bounded by their limited set of 

experiences. Repeat inspections may reduce the objectivity and information content of the 

inspection outcome.  

 “Regulatory capture” could be another possible explanation for degradation in inspection 

quality as investigator specific experience increases (Stigler, 1971; Salant, 1995). A stream of 

theoretical (and limited empirical) research signals a possible risk of an employment “revolving 

door” which exists between industry and government. This may lead to less objective inspections, 

as a regulator gains experience at a site, she/he may be incentivized to “go easier” on a site with 

the hope of future employment.  

In sum, there is reasonable evidence to suggest that increased specific experience may 

hinder, not help, an investigator and reduce the information contained in the inspection outcome. 

 

HYPOTHESIS 2B: Specific inspection experience decreases the information content of 
inspections such that inspection outcomes are less predictive of future recalls with 
increasing specific experience  
 
The previous arguments established that site-specific experience can have a downside by 

creating undue familiarity and complacency on the side of the investigator. Does general experience 

have a similar downside as well? While the effects of general experience in the inspection process 

are under-investigated, past studies point to such a downside. Bardach and Kagan (2002) provide a 

stark contrast between regulatory investigators who have general experience and those who do not. 

They show that investigators who are new to their role conceal their lack of self-confidence with 

strict legal adherence to the letter of the law, and become, potentially, more “hard-line” or accurate 

investigators. Conversely, experienced investigators may rely on their background and their 

previous inspections to apply personal filters to what they may deem acceptable, though it may not 

meet the true requirements. 

Past research on FDA investigator heterogeneity has also identified general experience as 

a factor that affects performance. Macher et al. (2011) found that as FDA investigators gained more 

general experience, they were less likely to give a plant an OAI inspection outcome. The authors 
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measured experience as the total number of inspections at all plants completed by individual 

investigators. The authors do not assign a reason for this result. However, in light of the above 

literature, one possibility is that investigators slip into a complacent state of low performance after 

general experience increases, witnessing numerous plants, some of which operate on the extreme 

fringes of acceptable levels of quality. An experienced investigator may overlook more common, 

yet still important, quality system gaps. This would cause their inspection results to become less 

accurate, and less predictive of future quality. 

 

HYPOTHESIS 3B: General inspection experience decreases the information content of 
inspections such that inspection outcomes are less predictive of future recalls with 
increasing general experience  

2.5 Investigator Experience and Recalls 

Hypothesis 1 is built on the idea that inspection outcomes contain information about the true 

quality state of a plant, and Hypotheses 2-3 refine this idea by suggesting that the amount of 

information contained in the inspection outcome depends on the experience of the investigator. As 

described at the end of Section 2.3, more informative inspections are better, not only for the 

regulator and the public, but also for the participating plant, since such information would allow a 

plant to react, improve their processes in time and possibly prevent future recalls. 

Note that less informative inspections may lead to type I and type II errors which are both 

detrimental for quality performance. Investigators providing a plant with a ‘clean bill of health’ 

even though deep quality problems exist, point to missed opportunities for learning and 

improvement. If an investigator points out problems that either do not exist or have no substantive 

quality implications, they require plant managers to needlessly channel their effort in addressing 

them. Such a prioritization will crowd out their regular effort and attention on maintaining and 

improving their processes. In that sense, both types of errors can lead to disruptions in future quality 

performance. We summarize our arguments in Figure 2.2. 
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Figure 2.2 Unconditional Recall Hazard at Time t1 

  
 

As explained earlier, the difference between informative and uninformative inspections is 

the degree to which adverse/favorable inspection outcomes can differentiate the recall hazard at a 

plant. Figure 2.2 depicts the recall hazards of adverse/favorable outcomes (grey dots) as far apart 

from the unconditional recall hazard (black dot) for informative inspections. In uninformative 

inspections, these conditional and unconditional hazards lie in close proximity to each other. 

Unconditional on the outcome of an inspection, the recall hazard of a plant should be higher if 

inspections are not informative than if they are informative. The dotted line of the recall hazard of 

each type of quality management system in Figure 2.1A under high inspection information is below 

its counterpart under low inspection information at future time t1 in Figure 2.1B. In other words, 

unconditional on the inspection outcome, the recall hazard should be lower after the inspection for 

an informative inspection compared to an uninformative inspection. This is shown in Figure 2.2 by 

the black dot under high inspection information lying below the black dot for low inspection 

information. More informative inspections are thus beneficial in terms of reducing the hazard of 

recalls. 

The logical implication is that there should be a direct and causal relationship between 

investigator experience and future recalls. If the upside of investigator experience outweighs the 

downside, then specific and/or general experience among investigators should lead to more 

informative inspections, and a reduced hazard of future recalls, unconditional on the inspection 

outcome. This is, in essence, the assumption under which the FDA currently operates, and a key 
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reason why investigators are not intentionally rotated among different plants. If, however, the 

downside of investigator experience outweighs the upside, this assumption would be flawed, and 

investigator experience would lead to less informative inspections and would be associated with an 

increased hazard of recalls. In the case of specific experience, such a relationship would imply that 

a rotation policy might be advantageous. In the case of general experience, a relationship between 

experience and inspection outcomes would imply that investigators should not stay on their job for 

too long. We therefore test this assumption explicitly by formulating the following competing 

hypotheses: 

 

HYPOTHESIS 4A: Specific inspection experience leads to a low hazard of future recalls. 
 
HYPOTHESIS 4B: Specific inspection experience leads to a high hazard of future recalls. 
 
HYPOTHESIS 5A: General inspection experience leads to a low hazard of future recalls. 
 
HYPOTHESIS 5B: General inspection experience leads to a high hazard of future recalls. 

 

Clearly Hypotheses 2-5 are formulated in a competing fashion. When there is significant 

support for two different relationships based upon well-established theory, competing hypotheses 

are not uncommon (see e.g. Jain et al., 2014). Do the positive aspects of specific experience 

outweigh the possible downside? Do the benefits of general experience weigh more heavily than 

the drawbacks? It is conceivable that the resulting effect of specific and general experience on 

recalls is non-linear, such that while initially learning effects prevail, complacency eventually takes 

over. However, it is also conceivable that the upside generally outweighs the downside (or vice 

versa). 

While either one of our competing hypotheses is plausible, the specific context we study 

leads us to believe that the learning effects of experience may not be as salient as in other contexts. 

The FDA has more than 75 years of experience in conducting inspections; inspection routines are 

well documented and standardized through guidebooks and training programs for inspectors. The 

organization thus has accumulated a wealth of organizational knowledge and the potential learning 

from each additional inspection is marginal. It has also been shown that individual learning may 

simply be less important if the organization is highly experienced in the task at hand (Reagans et 

al., 2005). Additionally, while it is possible that a minority of inspections are carried out in teams, 

a vast majority of the inspections in our context has a single investigator. Thus, arguments of site-
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specific team learning hold less sway. Further, given the regulatory nature of the industry, 

production processes across sites are relatively more standardized compared to other industries, 

making the occurrence of site-specific tacit knowledge less likely. Thus, our learning hypotheses 

2A, 3A, 4A & 5A may be less plausible than our complacency hypothesis 2B, 3B, 4B & 5B. 

Additionally, past experience literature has demonstrated that general experience in similar 

“knowledge worker” settings (e.g., healthcare) has significantly less of a performance effect than 

specific experience (Huckman and Pisano, 2006; Huckman and Zinner, 2008). This leads us to 

believe that our specific experience hypotheses (2 & 4) may be more likely than our general 

experience hypotheses (3 & 5). Taken together, these arguments would suggest that our specific 

experience complacency hypotheses (2B and 4B) are more likely than our general experience 

learning or complacency hypotheses (2A, 3A-B, 4A, 5A-B).  

It is important to emphasize that unlike Hypotheses 1-3, Hypotheses 4-5 are causal in 

nature. Our first three hypotheses were built on the idea that inspection outcomes simply measure 

the quality management system effectiveness, and thus predict future recalls without causing them 

directly. Our last two hypotheses postulate that based on the information contained in the inspection, 

inspections serve as a feedback mechanism to the organization triggering improvement processes. 

This creates a causal link between experience (which influences the information content of 

inspections) and future recalls (which are affected by the resulting improvement processes). 

2.6 Research Design, Data Sources, and Variables 

We investigate the relationship between FDA plant inspections and recall occurrences for 

medical devices in the seven years covering 2000-2006. The year 2000 was set as the starting point 

since recall records were not available in digital form in prior years. The year 2006 was set as the 

ending point since we only had identifiable plant inspection data until that point. Recalls, FDA 

inspection data, and plant level controls for our study come from multiple Freedom of Information 

Act (FOIA) requests made to the FDA. The unit of analysis for our research is the plant, while the 

units of observation are inspections and recalls which occurred at the plant. In practice, recalls 

actually occur at the product level. However, FDA inspections occur at the plant level and address 

the state of the quality system at that plant, which affects all products produced there. To link recalls 

to plants, we used a plant identifier reported by the FDA in both the recall and the inspection data 

sets. It is important to note that in our sample, there were no instances where a recalled product was 
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built in two different plants. 

 

Dependent Variable 
Recalls. The dependent variable for our research is a product recall for medical devices 

manufactured and sold in the U.S. between 2000 and 2006. The FDA’s recall database includes the 

plant identifier, plant location, recall initiation date, product name, recall number, and the recall 

class. The recall class indicates the severity of the problem and ranges from class I (most severe) 

to class III (least severe). In our time frame, there are a total to 2,863 recalls (80 class I; 2,151 class 

II; and 632 class III). We used only unique recalls in all our analyses. In instances when one recall 

spawns several other related recalls in the same organization, we used the FDA recall number 

identification scheme to identify and remove non-unique recalls. 

We made two exclusions within our sample for the main analysis: first, we exclude Class 

III recalls, as they represent significantly less serious quality issues (for instance labeling mistakes). 

Thus, our main analysis includes only Class I and II recalls. Second, we also exclude recalls that 

occur within a two-week window of the inspection closure date. Our goal is to estimate the hazard 

of a recall following an inspection, but sometimes, plant management may recall a product during 

or immediately after an FDA inspection as a gesture of good-will towards the FDA. Experts in the 

medical device industry also recommended to us that recalls which occur during or immediately 

following an FDA inspection should be excluded because these capture the state of quality at the 

plant during an inspection, and may not represent the true state of relationship between inspection 

outcome and future recall hazard. We reanalyze our models without these exclusions in our 

robustness checks. 

 

Independent Variables 
Inspection outcome. FDA inspection data includes the business unit name, location, date of the 

inspection, investigator ID number, type of inspection and the inspection outcome. Inspection 

outcomes range from the highest level of quality and compliance (No Action Indicated-NAI) to the 

lowest (Official Action Indicate-OAI) with a moderate score in between (Voluntary Action 

Indicated-VAI). Indicator variables (No Action, Voluntary Action) were used to measure inspection 

outcome in our dataset with the reference category in our model being the worst outcome (OAI). 

Our data contain 4,767 inspections (2,300 NAI; 1,815 VAI; and 652 OAI) covering 2,244 unique 

U.S. plants inspected between 2000-2006. The summary statistics associated with the number of 
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investigators, inspections, and the number of inspections performed by each investigator are 

provided in Table 2.1.  

Specific experience. We measured investigator specific experience by counting the number of 

inspections that an investigator has performed at each plant at the time of the current inspection. 

We include the current inspection in the history count so that the first time an investigator inspects 

a facility, his/her specific experience variable equals one. The mean specific inspection experience 

was 1.4. While our recall and inspection outcome data cover the years 2000-2006, we obtained 

additional FDA data to strengthen our experience measures. Our specific and general experience 

measures cover all U.S. medical device inspections from 1994-2006. Though we were not able to 

obtain inspection history data prior to 1994, we demonstrate through robustness checks that this 

time window is sufficient to capture investigator experience. 

General experience.  Similarly, we measured general experience by counting the number of 

inspections performed by each investigator at all other plants at the time of the current inspection. 

The mean general inspection experience was 22.6. Note that we decided not to include the specific 

experience at a focal site in the general experience count. This choice was made to more clearly 

differentiate between the two concepts clearly. We tested whether an alternative scoring mechanism 

influences our results (by including specific experience in the general experience measure) and did 

not find any noteworthy differences. 

 

Control Variables 
Sales: Plant level sales values were provided by the FDA. The FDA collects annual sales from 

plants and groups them into ten separate categories, increasing in regular increments beginning 

with $0-$25,000 and ending with $50,000,000 and higher. We created indicator variables to 

represent each of these categories and included them as control variables. There were limited 

observations in the first three categories of sales ($0-$25,000; $25,000-$50,000; $50,000-

$100,000), so the first three categories were grouped together to serve as the referent category. 

Firm. There are 2,244 unique plants owned by 2,130 unique firms. There are 66 firms that have 

more than one plant in the data. To control for heterogeneity resulting from shared firms across 

plants, we created indicator variables for all firms which have multiple plants. Firm indicator 

variables are included in the analysis. 

Public.  An indicator variable signifies if the plant is part of a public or private firm (Public). A 

publicly traded firm may be privy to higher skilled personnel and a larger set of plant resources that 
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may reduce the hazard of a recall.  

Percent College Degree. In our sample, manufacturing plants are dispersed throughout the United 

States, and certain regions have higher skilled and more educated labor than other regions. To 

control for the impact of geographic heterogeneity in educated labor pool availability on recall 

hazard, we include the percent of the population with a college degree in the zip code of the plant 

(% College Degree). We used U.S. Census data to obtain the percent of the population that have 

college degrees in the plant zip code. 
Past Recalls. Past recalls could be indicative of future recalls. To control for the potential bias in 

our estimates, we computed a measure counting all prior recalls at the plant for the past three years 

(Recalls (last 3 years)). As recall data is unavailable prior to 1999, the first two years of the data 

(2000 and 2001) only include a one and two year window respectively. All future years in the panel 

(2002-2006) include a three year aggregated moving count. We also analyzed models which 

included a one year moving count and the results are substantively similar. 

Inspection type. Our data contains all three types of inspections: surveillance, compliance and 

complaint inspections, which represent different levels of severity. It is possible that a complaint 

inspection, which is more serious, may lead to more frequent recalls. To control for this effect, an 

indicator variable was used to signify the type of inspection (Surveillance, Compliance). We used 

complaint inspections as the reference category. There are 3,536 surveillance, 1,149 compliance, 

and 82 complaint inspections, resulting in a total of 4,767 inspections.                                                                                               
Year. It is possible that FDA policies related to recall enforcement and inspection processes may 

change over time; becoming more or less strict in enforcing federal regulations. To control for this 

possibility, we added indicator variables for the year of the inspection as control variables. 
Number of Products at the Plant. Plants may vary greatly by the number of products they produce. 

Some plants manufacture many products, while others focus on few products. It is possible that 

complexity ensuing from more products produced at the plant would increase the hazard of a recall. 

To control for this, we collected the number of products manufactured at each plant from the FDA, 

computed its natural log (Ln_Number of Products), and included it as a control variable in the 

analysis.                                                                                            
Technology at the plant. Plants may also vary in the level of technology of the products they 

produce. While some plants manufacture high technology products, others produce simpler devices. 

It is possible that plants that make technologically advanced products are more susceptible to 

product failures and recalls. We capture the class of products built at the plant to control for the 
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technology level at the plant. Medical devices are categorized into three groups (class 1, class 2, 

class 3) on the basis of product technology, where class 3 represents the highest technology, and 

class 1, the lowest technology. FDA provided us with the highest class of products built in each 

plant in our panel. We use this data to create three indicator variables (Highest Class 1, Highest 

Class 2, Highest Class 3) and treat Highest Class 1 as the referent category.    
Novelty at the plant.  The novelty of a device may be associated with the likelihood of a recall. 

For instance, a new implantable device used to treat a previously untreated disease may experience 

more unexpected failures than a device that has had years of usage in the market. Highly novel 

devices require pre-market approval (clinical trial) while low novel devices only require 

demonstration of similarity to prior approved products in the market. The most novel classification 

of a medical device is termed a pre-market approval (PMA) device, while the least novel is a 510K 

Exempt (510KE). 510K is a category of medical devices which only need to demonstrate similarity 

to prior approved products to be approved for sale in the U.S. 510K Exempt devices are those that 

are of such low novelty that they do not require any prior notification by the FDA prior to marketing 

the device. We control for the level of novelty of product built at the plant by measuring the highest 

submission type of products at the plant (Highest Submission PMA, Highest Submission 510K, 

Highest Submission 510KE) and treat Highest Submission 510KE as the referent category. This data 

was also provided by the FDA.        

 

Table 2.1 Inspection Descriptive Statistics by Year 
Year 2000 2001 2002 2003 2004 2005 2006 

# Investigators 238 244 226 277 239 227 244 
# Inspections 426 629 639 776 759 748 790 
# Plants inspected  457 654 695 831 814 799 859 
Mean, Inspections per investigator 1.79 2.58 2.83 2.8 3.18 3.3 3.24 
Min, Inspections per investigator 1 1 1 1 1 1 1 
Max, Inspections per investigator  19 18 25 19 21 18 16 

 

2.7 Empirical Strategy 

In selecting an empirical strategy, we need to take into account the unique characteristics of 

our data and contextual setting. Our data consists of multiple plants that have undergone one or 
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more inspections over a seven-year period from 2000 to 2006. To be included in the data, a plant 

required at least one inspection, but not necessarily any recalls, though many plants had multiple 

recalls during this time period. Our research objective is to assess the hazard of a recall for a 

manufacturing plant following an FDA inspection while taking into account the characteristics of 

the previous inspection. We chose survival modeling because by using the time at which an event 

occurs as the dependent variable, survival models estimate the relative hazard of failure (i.e. recall) 

for each unit based upon different levels of covariates (inspection outcome and investigator 

experience), which change over time.  

Within the general class of survival models, Cox-Proportional Hazard models are most 

frequently used because they do not require researchers to specify the underlying distributional 

form of the hazard, making them more flexible and less susceptible to distributional 

misspecification (Box-Steffensmeier and Jones, 2004). However, a critical assumption in using 

Cox-Proportional Hazard (CPH) model is that the hazard ratios must be constant over time. We 

tested for this assumption by comparing Kaplan-Meier observed survival curves with predicted 

Cox curves and found them close and parallel (Garrett, 1998). Quantitatively, we examined the 

statistical significance of Schoenfeld residuals and found that the residuals were not significant (all 

p-values > 0.10), indicating that hazard ratios are constant over time.  

As the plants in our data experience recurrent events in the form of multiple inspections 

and multiple recalls, we need more specialized forms of CPH models, which can accommodate 

recurrent events. There are two groups of recurrent event CPH models, the shared frailty and 

variance-corrected models. Shared frailty models estimate the parametric distribution that account 

for the unobserved heterogeneity within a given plant, but the estimates are conditional upon the 

chosen distribution of this heterogeneity. Variance-corrected models are not constrained by a 

specific distribution, but are still able to correct for the shared variance that will exist when a plant 

has multiple events.  

The next decision was to select the appropriate variance-corrected CPH model from the 

three frequently used options: Anderson-Gill, Marginal, and Conditional gap-time (Box-

Steffensmeier and Jones, 2004). The Anderson-Gill and Marginal models both cluster on the plant 

to control for heterogeneity, but analyze the hazard of an event based on the initial time when the 

plant entered the data and not on intermittent events that occur sporadically throughout time. 

Conditional gap-time models fit our data well as they are able to determine the hazard of one type 

of event (recall) following the most previous occurrence of another event (inspection). 
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We use a conditional gap-time Cox Proportional Hazard model to determine the hazard of 

each plant experiencing a recall following an FDA inspection, which can have three distinct 

outcomes (NAI, VAI, and OAI) and can be conducted by investigators who vary in their levels of 

specific and general experience. In a CPH model, a positive beta coefficient signifies that the time 

to failure is lessened by the covariate and is interpreted as an increased hazard. Conversely, a 

negative beta coefficient indicates a longer time to failure and a decreased hazard. CPH beta 

coefficients are interpreted multiplicatively after exponentiation. 

2.8 Results 

Descriptive statistics and correlations are presented in Table 2.2. We observe that both OAI 

and VAI are positively and significantly correlated with recalls whereas NAI is negatively 

correlated with them. Additionally, while specific experience is positively related to recalls, general 

experience has a negative correlation. 

The results of the CPH regression analysis are reported in Table 2.3. We include all our 

control variables, the dummy variables for the types of inspection, and the inspection outcome in 

column 1 (sales and firm dummies included but not shown). We then include the linear and 

quadratic effects of specific and general experience to capture potential main and marginal effects 

of experience respectively (columns 3 and 5). Finally, we include the four interaction terms between 

the two experience types and the two inspection outcomes (column 7). Several of our control 

variables are significant. A plant belonging to a publicly traded firm has a greater product recall 

hazard. Not surprisingly, a plant with past recall experience has a greater hazard of future recalls. 

The more products built at a plant, the more likely that plant is to experience a future recall.  

To test Hypothesis 1, we need to establish that favorable inspection outcomes (e.g., NAI or 

VAI) are associated with a lower recall hazard than adverse inspection outcomes (OAI). Our results 

show that beta coefficients for both NAI and VAI are statistically significant and negative, 

suggesting that a plant receiving either an NAI or a VAI has a reduced recall hazard. Thus, we fail 

to reject Hypothesis 1. Compared to a plant which receives an OAI, the recall hazard decreases by 

34.3% (e-0.42-1 = -0.343) when a plant receives an NAI score and by 22.1% (e-0.25-1 = -0.221) for 

VAI. 
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Table 2.2 Descriptive Statistics and Correlation Matrix 

 

 

 

 

 

 

  Mean Min  Max SD 1    2    3    4     5      6    7      8     9   10  11   12   13    14 
1 Recallsa 1.28 0 92 20.10 1.00              
2 Public 0.38 0 1 0.49 0.32* 1.00             
3 % Coll Deg 36.95 0 88.70 17.14 0.07* 0.00 1.00            
4 Recall_3yrs 9.02 0 115 18.50 0.56* 0.52* 0.04* 1.00           
5 # Prod 50.30 1 3124 1.64 0.35* 0.30* 0.07* 0.43* 1.00          
6 High Cl 3 0.32 0 1 0.47 0.15* 0.24* 0.08* 0.24* 0.36* 1.00         
7 High Cl 2 0.58 0 1 0.49 -0.08* -0.17* -0.03* -0.14* -0.07* -0.80* 1.00        
8 High Cl 1 0.10 0 1 0.24 -0.10* -0.07* -0.10* -0.12* -0.31* -0.18* -0.30* 1.00       
9 PMA 0.24 0 1 0.42 0.08* 0.19* 0.03* 0.18* 0.27* 0.81* -0.65* -0.14* 1.00      
10 510K 0.63 0 1 0.48 0.02 -0.08* 0.04* -0.03* 0.11* -0.53*  0.78* -0.31* -0.73* 1.00     
11 510Ke 0.13 0 1 0.29 -0.13* -0.11* -0.11* -0.16* -0.34* -0.21* -0.14* 0.76* -0.18*  -0.42* 1.00    
12 Surveill. 0.70 0 1 0.46 -0.13* -0.07* 0.07* -0.13* -0.01 -0.08* 0.08* 0.00 -0.07* 0.07* -0.01 1.00   
13 Compliance 0.29 0 1 0.45 0.13* 0.07* -0.06* 0.12* 0.00 0.08* -0.09* 0.01 0.07*   -0.07* 0.01 -0.96* 1.00  
14 Complaint 0.01 0 1 0.13 0.00 0.01 -0.01 0.03* 0.04* -0.01   0.03* -0.02 0.00 0.00 0.00 -0.20* -0.08* 1.00 
15 Official Act 0.16 0 1 0.37 0.09* 0.01 -0.03* 0.09* 0.03* -0.04*  0.04* 0.00 -0.06* 0.04* 0.01 -0.23*  0.23* 0.01 
16 Volun Act 0.39 0 1 0.49 0.03* 0.00 0.03* 0.00 -0.03* -0.02*  0.04*  -0.03* -0.05* 0.05* -0.02 0.02 -0.01 -0.02 
17 No Act 0.45 0 1 0.50 -0.09* -0.01 -0.01 -0.07* 0.01 0.06* -0.07* 0.03* 0.09*  -0.08* 0.01   0.16* -0.16* 0.01 
18 Spec Exp 1.41 0 16 1.03 0.10* 0.10* -0.41* 0.17* 0.13* 0.16* -0.11*  -0.06* 0.20* -0.11* -0.06* -0.12*  0.12* 0.00 
19 Gen Exp 22.63 0 147 23.40 -0.05* 0.06* 0.07* 0.03* 0.03* 0.07* 0.04*  -0.04* 0.06* -0.02 -0.03*  0.11* -0.12* 0.02 

    15 16 17 18 19 
15 Official Act 1.00     
16 Volun Act -0.35* 1.00    
17 No Act -0.39* -0.72* 1.00   
18 Spec Exp -0.02 -0.02 0.04* 1.00  
19 Gen Exp -0.09* -0.04* 0.11* 0.27* 1.00 
 
a Recalls per plant 
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The two interaction terms between specific experience and inspection outcome are positive 

and statistically significant (Specific experience x Voluntary Action, Specific experience x No 

Action), while the two interaction terms between general experience and inspection outcome are 

not significant. Thus, our results do not lend support to Hypotheses 2A, 3A and 3B but we fail to 

reject Hypothesis 2B. Our results suggest that as specific experience increases, the relationship 

between a favorable inspection outcome (NAI or VAI) and a low recall hazard is weakened. In 

other words, increase in specific experience decreases information content, and does not improve 

the ability of an inspection outcome to predict a future recall. In fact, increasing specific experience 

worsens the relationship between the inspection outcome and the recall hazard for both NAI and 

VAI. An interaction plot (Figure 2.3), which demonstrates the hazard of a recall at each level of 

specific experience (contingent upon the inspection outcome and holding all other variables at their 

means) confirms that as specific experience increases the recall hazard related to each inspection 

outcome converges (and increases with experience). This implies that the information content of 

inspections is reduced with an increase in specific experience.  

Specific experience also has a significant and positive main effect on the hazard of a recall. 

Every additional visit to a plant by an investigator increases the hazard of that plant experiencing a 

recall by 36.3% (e0.31-1=0.363). We reject Hypothesis 4A but fail to reject Hypothesis 4B. We do 

not find a significant relationship between general experience and recall hazard (reject Hypotheses 

5A and 5B). We included quadratic terms to explore the possibility of a non-linear relationship 

between investigator experience and future recall hazard (e.g., experience could initially increase, 

but eventually decrease recalls). The results show that the quadratic effect of specific experience 

on recall hazard is negative and significant, although effect size (0.01% impact on the recall hazard) 

is very small. We find that the general experience quadratic term is not significant.  

In sum, favorable inspection outcomes result in a lower recall hazard (H1). The more 

specific experience of the investigator, the lower the information content of the inspection, and the 

reduced ability of the inspection to predict future recalls (H2B).  Finally, the more specific 

experience of the investigator, the higher the recall hazard, regardless of the inspection outcome 

(H4B). 

 

Robustness Checks 
We conduct several robustness checks for our analyses. We first replicate the main results by 

including data that were excluded from the main analysis. Second, we verify the findings related to 
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specific experience by examining it in a more nuanced manner. Finally, we try to glean the exact 

level of specific experience at which complacency begins. It is important to note that as the unit of 

analysis in this study is either an inspection or a recall, the number of observations in robustness 

checks change based upon the dependent variable. For example, if class III recalls are included for 

a robustness check, the number of observations will be higher than in the main analysis. Detailed 

explanations for the sample size in each analysis are included as table footnotes. 

First, we analyze our model by including the class III recalls and recalls that occur within 

two weeks of an inspection date. We also analyzed an additional model with just class II recalls. 

The results of the additional CPH models are substantively similar to the full model results (Table 

2.4, columns 1 and 3). The three different inspection types (surveillance, compliance, and complaint) 

vary greatly in potential severity. FDA experts suggest that compliance and complaint inspections 

are more serious, whereas surveillance inspections are routine and occur more regularly. Our main 

analysis included all three inspection types, but it is possible that the relationship between 

inspection outcomes and recalls only exists for more serious inspection types but not for the routine 

inspections. To verify this, we analyzed our hypothesized relationships by limiting our data to 

surveillance inspections only (Table 2.4, column 5). All results are in Table 2.4 are similar to the 

main results presented in Table 2.3. 

An important conclusion from our analyses is that specific experience has both a main 

effect upon recalls and an interaction effect with inspection outcomes upon recalls. However, there 

are at least two alternate explanations that could lead to this result. First, the level of specific 

experience could be endogenous to plant performance: that is, the FDA may be less likely to assign 

a new investigator to a troubled plant. To rule out this explanation, we examined the frequency 

distribution of NAI, VAI, and OAI outcomes given by investigators at different levels of their 

specific experience. We tested the percentage of OAI inspections occurring at each level of specific 

experience, and found no significant difference between them (results available upon request) and 

can conclude that the level of specific experience is not related to plant inspection outcome.  



  
 

33 
 

 
          

 

Table 2.3 Cox Regression Analysis-Hazard of a Recalla 

 

 
) 

   (1) (2)   (3)  (4)   (5)  (6) (7) (8) 
   β SE   β  SE    β  SE  β SE 

Public 0.26* (0.13) 0.25+ (0.13) 0.25+ (0.13) 0.25+ (0.13) 
% College Degree 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
Recalls (Last 3 years) 0.02** (0.00) 0.02** (0.00) 0.02** (0.00) 0.02** (0.00) 
Ln_Number of Products 0.21** (0.05) 0.20** (0.06) 0.20** (0.06) 0.20** (0.06) 
Highest Class 3 -0.10 (0.42) -0.10 (0.43) -0.11 (0.43) -0.09 (0.43) 
Highest Class 2 -0.46 (0.41) -0.45 (0.41) -0.45 (0.41) -0.45 (0.41) 
Highest Submission PMA 0.20 (0.42) 0.16 (0.43) 0.16 (0.43) 0.14 (0.42) 
Highest Submission 510K 0.34 (0.39) 0.34 (0.39) 0.34 (0.39) 0.34 (0.39) 
Surveillance -0.21 (0.21) -0.20 (0.21) -0.19 (0.20) -0.19 (0.20) 
Compliance 0.23 (0.22) 0.22 (0.21) 0.21 (0.21) 0.21 (0.21) 
Voluntary Action -0.24* (0.10) -0.22* (0.11) -0.22* (0.11) -0.25* (0.11) 
No Action -0.42** (0.09) -0.40** (0.09) -0.39** (0.10) -0.42** (0.09) 
Specific experience   0.17** (0.03) 0.26** (0.05) 0.31** (0.05) 
General experience   -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) 
Specific experience2 

    -0.01* (0.01) -0.03** (0.01) 
General experience2 

    0.00 (0.00) 0.00 (0.00) 
Specific exp×Voluntary Action        0.14+ (0.09) 
Specific exp×No Action       0.27** (0.09) 
General exp×Voluntary Action       -0.00 (0.00) 
General exp×No Action       -0.00 (0.01) 
Observations 6,874  6,874  6,874   6,874  
Wald χ2 1729.18 

 
 1828.83 

 
 1945.94 

 
  2100.09 

 
 

Standard errors in parentheses + p<0.1, * p<0.05, ** p<0.01.  Note: Sales, Firm and Year dummies included but not shown 
aExcludes recalls which occur within two weeks of inspections and class III recalls. There are 632 class III recalls that occur at all times, and 124 class I and II recalls which 
occur within 2-week window of the inspection. 7,630 – [632 class III recalls + 124 class I and II recalls] = 6,874 inspections and recalls 
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Table 2.4 Robustness Checks-Time and Recall Class Exclusions 

 
Class I, II & III 

Recalls 
No time gapa 

Class II Recallsb 
 

Surveillance 
inspections onlyc 

      (1)       (2)    (3)        (4)     (5)       (6) 

       β        SE     β         SE     β         SE 

Public 0.20 (0.13) 0.29* (0.13) 0.22 (0.16) 
% College Degree 0.00 (0.00) 0.00 (0.00) 0.01+ (0.00) 
Recalls (last 3 years) 0.02** (0.00) 0.02** (0.00) 0.02** (0.00) 
2000 0.56** (0.11) 0.43** (0.13) 0.49** (0.16) 
2001 0.31** (0.11) 0.22+ (0.13) 0.19 (0.18) 
2002 0.28** (0.11) 0.28* (0.12) 0.33* (0.15) 
2003 0.11 (0.11) 0.12 (0.11) 0.09 (0.13) 
2004 0.14 (0.10) 0.05 (0.11) 0.09 (0.15) 
2005 0.06 (0.08) 0.01 (0.09) 0.15 (0.10) 
Ln_Number of Products 0.19** (0.05) 0.20** (0.06) 0.23** (0.06) 
Highest Class 3 -0.00 (0.36) 0.06 (0.38) 0.05 (0.38) 
Highest Class 2 -0.40 (0.34) -0.33 (0.36) -0.33 (0.35) 
Highest Submission PMA 0.13 (0.33) 0.11 (0.35) 0.04 (0.34) 
Highest Submission 510K 0.32 (0.30) 0.25 (0.31) 0.51+ (0.29) 
Surveillance -0.15 (0.18) -0.21 (0.20)   
Compliance 0.25 (0.18) 0.14 (0.21)   
Voluntary Action -0.23* (0.11) -0.28** (0.11) -0.19 (0.13) 
No Action -0.35** (0.10) -0.47** (0.09) -0.40** (0.14) 
Specific experience 0.27** (0.05) 0.31** (0.05) 0.34** (0.07) 
General experience -0.00 (0.00) -0.00 (0.00) -0.01+ (0.00) 
Specific experience2 -0.02** (0.01) -0.03** (0.01) -0.02** (0.01) 
General experience2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
Specific experience×Voluntary Action 0.13+ (0.08) 0.12 (0.08) 0.18+ (0.10) 
Specific experience×No Action 0.17* (0.07) 0.21** (0.07) 0.20* (0.09) 
General experience×Voluntary Action -0.00 (0.00) -0.00 (0.00) 0.00 (0.01) 
General experience×No Action -0.00 (0.00) -0.00 (0.00) 0.00 (0.01) 
Observations 7,630   6,918   5,221  

Wald χ2  2,346.08  2,076.18  6,406.6  
Standard errors in parentheses + p<0.1, * p<0.05, ** p<0.01 

a All observations in the data. Includes 4,767 inspections and 2,863 recalls. 4,767 + 2,863 = 7,630 inspections and                  
recalls. b Excludes class I and class III recalls. 7,630 – [80 class I recalls + 632 class III recalls] = 6,918 inspections 
and recalls. c Excludes 2,409 compliance and complaint inspections and their associated subsequent recalls. 7,630 – 
2,409 =5,221 inspections and recalls. Note: Sales and Firm dummies included but not shown 
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Table 2.5 Propensity Score Matching Results 
Specification Treatment 

group 
Control 
group 

Average treatment effect 
on the treated 

Standard 
Error 

t-statistic 

Nearest neighbor 611 470 1.76 0.41  4.31** 
Stratification 611 729 1.37 0.37      4.10** 
Kernel matching 611 729 1.56 0.35  4.52** 
Coarsened exact 
matching 

611 729   2.04 0.45  4.50** 

  Standard errors in parentheses + p<0.1,*p<0.05, ** p<0.01 
 
 Table 2.6 Levels of Specific Experience 

 (1)          (2)   (3)       (4) 

    β            SE   β         SE 

Public 0.26* (0.13) 0.27* (0.13) 
% College Degree 0.00 (0.00) 0.00 (0.00) 
Recalls (last 3 years) 0.02** (0.00) 0.02** (0.00) 
2000 0.38** (0.12) 0.40** (0.12) 
2001 0.14 (0.13) 0.17 (0.13) 
2002 0.17 (0.12) 0.19 (0.12) 
2003 0.00 (0.10) 0.04 (0.10) 
2004 -0.00 (0.11) 0.01 (0.10) 
2005 -0.01 (0.09) 0.01 (0.09) 
Ln_Number of Products 0.17** (0.06) 0.18** (0.05) 
Highest Class 3 -0.03 (0.43) 0.03 (0.43) 
Highest Class 2 -0.37 (0.41) -0.36 (0.41) 
Highest Submission PMA 0.16 (0.43) 0.12 (0.43) 
Highest Submission 510K 0.34 (0.40) 0.34 (0.40) 
Surveillance -0.28 (0.20) -0.23 (0.20) 
Compliance 0.07 (0.21) 0.13 (0.21) 
Voluntary Action -0.28** (0.11) -0.35** (0.10) 
No Action -0.44** (0.08) -0.58** (0.09) 
General experience -0.00+ (0.00) -0.00* (0.00) 
Specific experience_2 inspections 0.37** (0.10) 0.39** (0.10) 
Specific experience_3 inspections 0.34* (0.16) 0.49** (0.13) 
Specific experience_4 or more inspections 0.71** (0.15) 0.79** (0.13) 
Specific experience_2 inspections x Voluntary act.   -0.07 (0.30) 
Specific experience_2 inspections x No action   0.16 (0.27) 
Specific experience_3 inspections x Voluntary act.   1.03** (0.30) 
Specific experience_3 inspections x No action   0.95** (0.28) 
Specific experience_4 or more inspections x Voluntary act.   0.12 (0.29) 
Specific experience_4 or more inspections x No action   0.82** (0.22) 
Observations     7,630  7,630  
Wald χ2   2,144.55  2,192.01  
Standard errors in parentheses + p<0.1, * p<0.05, ** p<0.01 Note: Sales and Firm dummies included but not shown 
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Figure 2.3 Recall Hazard as a Function of Inspection Outcome and Specific Experience 

 
   a Hazard model beta coefficients  

 

Second, our measure for specific experience could be materially incomplete, as the 

experience data begins in 1994 and not at the beginning of each investigator’s career. Although the 

investigator experience data spans 13 years, beginning in 1994, there is a possibility that our results 

would be different if investigator experience prior to 1994 were included. We examined this in 

more detail. First, we found that an investigator remains in the dataset for an average of 2.96 years. 

This suggests that the 13-year duration we used may be sufficiently long and most investigators 

were likely to have performed their first inspection within the confines of the current data. To test 

our conjecture, we limited our sample to investigators who had no inspections in the first five years 

(1994-1998) of our experience data. Our implicit assumption is that absence of inspection data in 

the previous five years implies that these investigators were newly assigned to plant inspections 

after 1998, resulting in a more accurate experience measure. In case any of these investigators had 

inspection experience prior to 1994, a five-year gap (equivalent to a complete re-start in the 

inspection process) was used. The results from the restricted sample indicate that the significance 

and effect sizes for substantive variables of interest are robust (results available upon request). 
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In Figure 2.3, we observed that as investigators gain specific experience, the overall hazard 

of a recall increases regardless of the inspection outcome. According to the FDA, investigator 

assignment to manufacturing facilities is random in nature and is guided by the FDA’s goal of 

minimizing setup costs for the investigator, rather than any specific strategic intent. Investigators 

may be rotated among plants when particular regional investigators are unavailable or in cases of 

investigator turnover. Since these reasons for rotating investigators appear to be exogenous (a 

particular investigator is sick, busy or chooses to retire from the inspection process), we can, to 

some degree, assess whether investigator rotation leads to less recalls. To assess whether recall rates 

differ between those plants that see regular inspection rotation and those that see the same 

investigator, we estimated average treatment effects for investigator rotation. To do that, we 

excluded all plants which had only one inspection in our data, and categorized the remaining plants 

into those that see perfect rotation (i.e. a different investigator every time) and the plants that do 

not (i.e. investigators repeat at least once). Following Brown et al. (2013) and Iacus et al. (2012), 

we used our control variables to create a matched sample and conducted a propensity score analysis 

using four different matching methods: nearest neighbor, stratification, kernel matching, and 

coarsened exact matching (Table 2.5). There are a total of 1,340 plants which had more than one 

inspection in our dataset, 729 of these plants saw a new investigator for each inspection, and 611 

saw repeat investigators. The results show that irrespective of the matching method used, there is a 

significant increase in recalls per plant when the plant sees the same investigator (average treatment 

effect on the treated in Table 2.5). There is an average increase of 1.7 recalls per plant, within the 

seven-year panel, when the treatment effect is averaged across all four methods. Hence, rotating 

investigators reduces the number of recalls per plant by more than one.  

In our main analysis, we measured specific experience as a continuous variable by counting 

the number of inspections that an investigator conducted at a particular plant. We scrutinize our 

data further to discern the precise point at which specific experience begins to have both a main 

effect on recalls and a moderating effect on the relationship between inspection outcome and recalls. 

We use an investigator’s first inspection at a plant as the reference category, and code Specific 

experience_2, Specific experience_3, Specific experience_4 or more inspections as indicator 

variables which equal one if the inspection was the 2nd, 3rd, 4th or greater inspection respectively 

and zero otherwise. We then repeated the analysis (Table 2.6). The results show that each indicator 

variable is positive and significant (column 1), implying that the main effect of specific experience 

on product recalls begins with an investigator’s 2nd inspection. Moreover, the effect sizes for the 



  
 

38 
 

indicator variables show that the impact continues to grow as the number of inspections increase. 

There is a 48% recall hazard increase on the second visit (e0.39-1=0.48), and a 63% recall hazard 

increase on the third visit (e0.49-1=0.63). We then included interaction terms for each level of 

specific experience and inspection outcomes (column 3). The two interaction terms for the 2nd 

inspection at a plant (Specific experience_2) and the inspection outcome are not statistically 

significant. In contrast, the interaction terms with Specific experience_3, and Specific experience_4 

or more inspections are statistically significant. In other words, the effect of specific experience 

upon the information content of the inspection outcome does not begin until the 3rd inspection, and 

continues with the 4th inspection onward. More specifically, the main effect of specific experience 

begins at the 2nd inspection, but it is not until the 3rd inspection that specific experience begins to 

moderate the relationship between inspection outcome and the hazard of a recall. These results are 

also depicted in Figure 2.3.  

It is also possible that inspection outcome mediates the relationship between investigator 

experience and recalls. In other words, experience may lead to a certain outcome, which may then 

predict the recall hazard. We tested mediation with a two-stage model, where investigator 

experience predicts inspection outcome and the resulting recall hazard from inspection outcome. 

We found no evidence of mediation (detailed results are available upon request). 

2.9 Discussion and Implications 

This study makes three important contributions to quality management and experience 

literature streams. First, we validate an essential theoretical, but empirically unproven assumption 

(Deming, 1982) that plant inspections predict future plant quality. Favorable FDA plant inspection 

outcomes (VAI and NAI) indicate a significantly lower hazard of a future product recall than 

adverse inspection outcomes (OAI). The results from our hazard analysis show that compared to a 

plant that receives an OAI score, a plant that receives an NAI score has a recall hazard decrease of 

34.3%. Compared to a plant that receives an NAI, a plant that receives an OAI score has a recall 

hazard increase of 52.2%.13 

Second, we demonstrate that complacency effects are a significant concern in inspection and 

auditing settings that may outweigh benefits of learning. By using actual objective measures of 

                                                        
13 Determined by analyzing our main model using NAI as the referent category and examining the coefficient for OAI. 
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product performance, instead of future audit findings as past studies have done, this work removes 

alternative explanations from previous related accounting, safety audit, and FDA inspection 

research that has found fewer citations result from more investigator experience (Macher et al., 

2011; Short et al., 2013; Deis and Giroux, 1992; Carey and Simnett, 2006). These studies use future 

audit findings as their dependent variable, and find that audit findings decrease with experience. 

This result could be rooted in quality improvement that occurs with investigator experience, or 

deterioration in inspection quality. In light of our findings, it is unlikely that fewer future citations 

are a result of investigator learning (and improved plant quality), but are more likely attributable to 

investigator complacency (and reduced inspection quality). Third, by studying these questions in 

this context, we demonstrate that the promise of future financial gains is not the only mechanism 

that can create investigator complacency. The stale, routine nature of the job, and the familiarity 

which comes from repeat visits to a site, can lead to complacency and lower the information 

contained in an inspection, even when the investigator has no clear incentive to “go easier” on an 

inspection site. In our discussions with industry managers and FDA personnel related to these 

results, we learned that it is not common for medical device FDA investigators to transition into 

industry and that regulatory capture would not be a likely source of complacency in this setting. 

From a managerial perspective, our research provides two important insights. First, our 

findings indicate that future recalls may be on the horizon if careful attention is not paid to 

heightened quality control upon receiving an adverse inspection outcome. Second, and more 

broadly in the context of supply chain management, our research provides some indication that 

adding quality inspections into the manufacturing process, as in a supplier plant inspection, may 

serve to more effectively guarantee quality in the product. While product quality inspections in 

general may be viewed in research and practice as an archaic method to control quality, regulators 

of industries such as medical devices, pharmaceuticals, and automotives still mandate such steps. 

Given such a requirement, economically allocating product inspection resources is critical. Plant 

inspections, which provide an accurate indicator for future quality hazard, can lead to significant 

potential savings for the inspecting firm by allowing them to focus limited resources more precisely. 

If well-trained plant investigators identify a plant’s operating processes as high quality, then the 

resources dedicated to inspecting products from that plant might be reduced. Conversely, if a plant 

inspection indicates a high quality risk, valuable inspection resources can be more effectively 

targeted at heightening the inspection frequency and intensity of associated products and working 

with suppliers to root out quality problems at their source. External stakeholders may also extract 
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crucial guidance from these findings. Regulators, managers, investors, and supply chain partners, 

looking to pinpoint plants that are operating at a high hazard of a future recall can leverage 

publically available FDA plant inspection data as an early warning signal. Medical doctors can also 

use this data to improve their patient care by more carefully scanning a product’s origin, which 

could reveal a potentiality for becoming defective. Investors may be able to use this information to 

adjust stock price valuations early. 

The association between inspection outcomes and recalls is, however, contingent upon the 

experience of the investigator. We observe two effects of complacency related to specific 

experience. First, investigators that have previously inspected a plant, even once, are associated 

with an increase in the recall hazard, unconditional on the inspection outcome. The more often the 

same investigator visits the plant, the higher the chance that the inspection will be followed by a 

recall. We attribute this affect to a reduction in inspection information content as specific experience 

increases. Both type I and type II errors, resulting from low information inspections, may lead to a 

higher hazard of a recall. Additionally, if an investigator has visited the plant more than twice in 

the past, their inspection results provide significantly reduced information as it relates to future 

recalls. Inspection outcomes do not reliably predict recall hazards for this category of investigator. 

We also observe that unlike some past experiential learning research, we see no effect of general 

experience on our results. One possibility for this finding is the training process and institutional 

knowledge that resides within the FDA. The FDA has been performing plant audits in different 

evolving forms since 1938.14 Over 75 years of institutional knowledge may create an environment 

in which new investigators are well prepared for their roles and apparently do not get better or 

worse as their inspection experience grows outside of the specific plant they are inspecting. 

 An apparent solution to the negative repercussions of growing specific experience may be 

more frequent investigator rotation among plants. Subject to travel budget constraints, the FDA 

could potentially rotate plant investigators among a larger set of plants to avoid repeat inspections 

by the same investigator. To investigate the possibility of more frequent investigator rotation, we 

obtained updated counts of the current-day numbers of FDA investigators and medical device plants 

requiring inspection. According to the publically available data on the FDA’s website, listing 

inspections and their results from 1/1/2009 to 12/31/2012, there were 5,112 medical device plants 

requiring inspection as of January 2014.15 Through an additional FOIA to the FDA, we were able 

                                                        
14 http://www.fda.gov/AboutFDA/WhatWeDo/History/FOrgsHistory/ORA/ucm083663.htm 
15 http://www.fda.gov/ICECI/EnforcementActions/ucm222557.htm.  Note, this file does not include investigator identification and 

http://www.fda.gov/ICECI/EnforcementActions/ucm222557.htm
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to identify the number of FDA medical device plant investigators every year for the past decade. 

Using 2013 data, the most recent year available, we found that there were 245 investigators listed. 

Assuming that the FDA maintains a two-year frequency for plant inspections, it would equate to 

2,556 inspections per year or 10.4 inspections per investigator per year. If the FDA strategically 

decided to not allow investigators to repeat at a specific plant, these investigators would inspect 

approximately 10 new plants each year, equating to 511 years (5,112÷10) before an investigator 

would be required to inspect the same plant more than once. Cleary, investigator rotation while 

maintaining an inspection every two-years for a plant is at least a mathematical possibility. 

Inspecting 10 plants per year per investigator is approximately a 200% (10 compared to 3.24) 

increase in the average inspections completed per year per investigator, when considering 2006 

inspection data, but it reduces the required work-load of the most-used investigator by about 40% 

(10 compared to 16) per Table 2.1. This change in strategy would lead to a more balanced inspection 

load for each individual investigator and simultaneously create an environment in which 

complacency may be reduced. 

A potential negative effect of a mandatory rotation strategy could be the additional travel 

costs incurred. Assuming 2,556 annual inspections, all requiring the maximum U.S. travel distance 

across the country, the additional costs would be approximately $766,800.16 Rotation should be 

able to reduce approximately 1.7 recalls per plant per seven years according to Table 2.5. However, 

since not all plants experience recalls, we assumed that this benefit would only be attributed to 

plants that had experienced at least one recall in our dataset; 532 plants. This added travel cost for 

FDA can be compared to a possible reduction of 904 medical device recalls (532 x 1.7). The benefit 

of preventing just one major recall, which can affect many people’s health and safety, clearly 

outweighs the cost of the increased travel schedule that would be required in order to achieve a 

more frequent investigator rotation. Rotating only within FDA regional districts would lead to even 

lower travel costs, though the likelihood of repeating inspections at a plant would be higher than in 

the case of cross-country rotation. 

An alternative explanation for our results may be related to behavioral aspects of plant 

management, instead of FDA investigators. In discussing our results with FDA officials, one 

alternative raised was the possibility that plant managers became more “savvy” as they experience 

                                                        
hence does not allow us to extend the time period of our main analysis. 
16 We assume an average cross-country flight cost of $600, as compared to an average regional flight cost of $300; leading to an 
incremental flight cost of $300 per inspection. Lodging is excluded from this analysis, as many of the current inspections already require 
lodging. $300 x 2,556 = $766,800. 



  
 

42 
 

multiple inspections by the same investigator. In essence, this argument points to manager 

malfeasance (learning how to hide problems from familiar investigators) as the mechanism and not 

investigator complacency. We have chosen to theoretically ground this study in the latter argument, 

which rests solidly upon results from past related literature and support from industry and regulator 

interviews. Fortunately, if the malfeasance argument is true in reality, the approach proposed in this 

paper still holds. Investigator rotation serves as a valid solution to both possible mechanisms. 

Another alternative explanation may be that the more often an investigator visits a site, the 

better understanding he/she has of plant practices and problems and the more familiar relationship 

with plant personnel allows managers at the site to uncover additional quality problems leading to 

more recalls. A vast majority of the individuals we spoke to in leadership positions in industry and 

the FDA believed that investigator complacency was much more likely to be the mechanism for 

our results than either manager malfeasance or investigator improved plant understanding over time. 

Further, since recalls originating directly from an inspection are excluded from our analysis, this 

explanation appears implausible. 

While our specific context is focused on quality inspections and product recalls, our 

research may apply more broadly to other inspection contexts. Could firms benefit from rotating 

managers responsible for performance reviews? Could investors benefit from firms rotating their 

auditors? Or could the public benefit from the Federal Reserve rotating the regulators associated 

with individual banks? We believe that rotation policies may be effective in many other contexts 

besides ours, and more research is clearly needed to examine the efficacy of rotation policies at 

improving performance outcomes. In the context of financial auditing, the practice of auditing firms 

rotating the partners responsible for an audit (as opposed to clients rotating auditing firms) is an 

established guideline. For example, the International Federation of Accountants in their 

international standard on quality control requires “the rotation of key audit partners after a pre-

defined period”17, and some studies of the Australian stock market seem to support this notion 

(Azizkhani et al., 2013). We hope our research stimulates more inquiry as to whether rotation 

policies within firms can generally overcome complacency effects. 

In general, an efficiency and quality trade-off must be analyzed in each case. In our context, 

investigator efficiency may suffer somewhat in a rotation scheme, however results indicate that 

inspection quality improves. The quality benefit significantly outweighs the lost efficiency. In other 

                                                        
17 http://www.ifac.org/sites/default/files/downloads/a007-2010-iaasb-handbook-isqc-1.pdf. 
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contexts, the lost efficiency may be too severe to justify a rotation strategy. This is an important 

consideration as additional applications of this research are pursued. More generally, our research 

points to a fundamental trade-off in supply chain relationship management. While we largely view 

experience as beneficial, supply chain settings require some form of control as well, and the 

complacency that comes with experience may limit the control necessary to maintain effective 

supply chain relations. A purchasing executive with whom we discussed this research narrated a 

very similar trade-off in his purchasing organization: key supplier account managers would initially 

benefit from the experience of managing an account, but would eventually become complacent and 

fail to effectively control costs within the supply chain relationship. His solution was similar to 

ours – he would rotate account managers to different accounts every six months to prevent 

complacency from taking over. This one example demonstrates the ability of managers to both 

leverage long-term relationships on an organizational level with key, strategic suppliers, while 

avoiding unwanted complacency by rotating individuals who manage these key, long-term 

suppliers. How prevalent is this trade-off between learning and complacency in supply chain 

relationships in general? Whether and when can rotation policies be used efficiently and effectively 

within organizations to better manage the risk of complacency? In other words, can the ‘dark side 

of supply chain relationships’ (Villena et al., 2011) be managed by effectively rotating the people 

responsible? 

Our analysis has limitations. Additional investigator demographics and training 

characteristics would enable a more complete picture of the investigator. However, this information 

was not available. Capturing complete career inspection data for FDA investigators would improve 

the analysis. Further, while we examine product recalls as one quality outcome metric, other quality 

outcome metrics are conceivable. Specifically in our context, the FDA also collects reports on 

product device failures more broadly (Manufacturer and User Device Experience, MAUDE 

database). It would be an interesting extension of our work to examine whether inspection outcomes 

are predictive of MAUDE reports. Further, while our analysis shows that rotation policies may be 

beneficial in our context, the correlational nature of our data naturally limits the confidence we can 

have in these results. A field experiment in cooperation with the FDA would more firmly establish 

the efficacy of such rotation policies. Further, our research cannot fully establish the causal 

mechanism underlying the benefits of inspector rotation; behavioral lab studies could shed further 

light on this issue. 

In this chapter, we have investigated attributes of investigators and inspections which may 
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help predict medical device recalls. Exposing these attributes and recommending investigator 

rotation at the FDA should reduce future medical device recalls. This policy change is under review 

by the FDA at the time of this dissertation. The next phase of the recall process, per Figure 1.1, is 

the managerial decision to recall. In chapter three, I investigate managerial behavioral factors that 

may influence the decision to recall; factors that are both situational (related to the individual 

product failure scenario) and dispositional (related to the disposition of the manager). Uncovering 

factors that influence this decision can improve the quality and objectivity of this decision. 
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Chapter 3:  
 
 

The Decision to Recall: A Behavioral Investigation 
in the Medical Device Industry 
 

3.1    Introduction 

The decision to recall a product from the market is fraught with complexity. There are often 

multiple criteria for recalling products, many that are not clearly specified. A recall, even when it 

is warranted, can result in significant negative consequences for all stakeholders, including product 

manufacturers, managers who make the decision, and consumers who use the product. While the 

decision to recall may be clear cut in some cases, such as when a faulty product is shown to cause 

customer deaths, such situations are rare. More often, the decision is not straightforward and only 

taken after much deliberation and consideration. Increased customer complaints could first result 

in additional scrutiny of the product, leading managers to monitor the product more closely rather 

than recall it immediately. Whether or not to recall involves logical arguments on both sides. On 

the one hand, managers may be tempted to “wait out the storm” assuming that product failures will 

eventually abate. Such caution may be more likely if the data is noisy and no root cause has been 

identified for the failure. It may also be in a manager’s best interest to wait and not incur the 

additional costs associated with a recall, as they are incentivized to increase profits. On the other 

hand, managers may be influenced to recall by the repercussions they perceive possible future 

product failures could have on a customer’s health or opinion of the company.  

There is anecdotal evidence to support how critical and complex these decisions can be. In 

some cases, it appears that recalls are not initiated when they perhaps should be. For instance, in 

2010, Johnson & Johnson was sanctioned by the Food and Drug Administration (FDA) for 

neglecting to issue a product recall in a timely manner after receiving numerous customer 

complaints related to multiple faulty products.18 In other cases, recalls are undertaken when they 

may not be required. Toyota’s brake recall provides a recent example. Between 2008 and 2010, 

Toyota recalled almost ten million vehicles due to an alleged problem with the brakes. Initially, 

                                                        
18 http://www.washingtonpost.com/wp-dyn/content/article/2010/05/01/AR2010050103051.html 
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Toyota denied having any problems, but then succumbed to intense pressure from customers, 

regulators and the media, and recalled all potentially faulty units.19 After numerous investigations, 

including those recently completed by NASA, it was determined that the brakes were not defective 

and the Toyota recall was likely unwarranted.20  

Despite the impact product recalls can have on customer health and safety, as well as firm 

performance, there is little empirical research examining the product recall decision. Our study 

addresses this research gap by examining how recall decisions are made in the medical device 

industry and identifying factors that are not specified in the FDA criteria and yet, they may 

influence the recall decision. We focus on the following factor-specific research questions: How 

does an individual physician concern influence the recall decision? Does the level of defect 

detectability contribute to the likelihood of recall? What impact does root cause understanding of 

defects have on the likelihood of recall? How is the recall decision influenced by individual 

managerial attributes, such as cognitive reflection level?   

We chose the medical device industry as the setting for this study because recalls in this 

industry are almost always decided by managers (rather than regulators, which is common in other 

industries such as automotive), and these recalls often have serious public health consequences.21 

Because of the innovative nature of these products, the recall criteria provided by the FDA (the 

regulatory agency responsible for medical devices) are somewhat vague. FDA recall policy states 

that companies must recall products that “present a risk of injury or gross deception or are otherwise 

defective.”22 The criteria are broad and open to multiple interpretations (e.g., should managers 

recall every defective product, recall only products that pose a risk of injury, or recall products that 

are safe for use, but are grossly deceptive such as those that are mislabeled). Managers are required 

to decipher this policy every time they contemplate a recall. This implies that the decision outcome 

is dependent on an individual manager’s subjective interpretation of the policy. 

We test our research questions through a controlled experiment utilizing vignettes 

developed with our industry partners. Because of the highly contextual nature of a recall decision, 

we draw our subjects for the experiment from a unique subject pool of managers employed in a 

Fortune 500 medical device company. To inform our choice of factors to manipulate, we conducted 

a two phase interview process with stakeholders within the medical device industry. In the first 

                                                        
19 http://www.theatlantic.com/business/archive/2011/05/who-was-really-at-fault-for-the-toyota-recalls/238076/ 
20 http://www.nhtsa.gov/UA 
21 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/RecallsCorrectionsAndRemovals/ 
22 Ibid. 
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phase, we conducted interviews to identify a broad set of factors that might influence the product 

recall decision despite not being explicitly delineated as recall criteria by the FDA. We then mapped 

these factors against behavioral theory to ascertain their potential behavioral effects. In the second 

phase, we narrowed the list to a final set of factors based on further feedback from our industry 

partners. The final list of hypothesized factors include three situational factors (individual physician 

customer concern related to the product defect, pre-use detectability of the defect by the physician 

customer, and managerial understanding of root cause of the defect underlying the recall), and one 

dispositional factor (cognitive reflection, as measured by the Cognitive Reflection Test, Frederick 

(2005)). These factors are described in more detail in Section 3.2. 

Results from the experiment show that, contrary to anecdotal evidence and managerial 

expectations, individual physician concern does not impact the decision to recall. However, a 

product defect that is less detectable by a physician pre-use is associated with a higher likelihood 

of recall. The likelihood of a recall decision increases by 48% when the defect cannot be detected 

by the physician. This implies that products with quality defects may be knowingly left in the 

marketplace if physicians can detect the defective products. The data also confirms that a better 

understanding of the root cause of the underlying product defect is associated with a higher 

likelihood of recall. The likelihood of recall increases by 65% when the root cause is understood 

compared to when it is not.  

The manager’s level of cognitive reflection (measured through the CRT test) also appears 

to influence an individual’s likelihood to recall. Our results suggest that managers with a high CRT 

score are 70% less likely to recall than managers who scored low. Finally, results from post-hoc 

analyses show that the effects of certain situational factors on recall likelihood depends upon a 

manager’s CRT score. Managers with high CRT scores are most affected by the root cause 

understanding of a defect. In contrast, managers with low CRT scores are only affected by other 

dispositional control variables, such as gender, experience, or their perceived relationship with the 

FDA (e.g., a good relationship with the FDA leads to a lower likelihood of recall). 

3.2 Research Phases I and II 

We conducted our research in three phases, as outlined in Table 3.1. The first two phases 

focused on developing a deeper understanding of the medical device industry and how the product 

recall process is structured, including how FDA guidelines are interpreted by practicing managers. 
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Our goal at the end of the first two phases was to have identified a set of unique factors that are not 

explicitly included in the FDA guidelines but have the potential to impact the recall decision from 

a behavioral perspective. These factors also needed to have face validity and be of interest to our 

industry partners, ensuring the study would be useful for practicing managers and regulators in 

future decision making.  

3.2.1 Phase I: Industry & Recall Process Understanding and Initial Factor Identification 
 

In phase I, we conducted exploratory unstructured interviews with practicing managers at 

two different U.S. Fortune 500 medical device companies and with FDA regulators. This helped us 

develop a deeper understanding of the medical device industry and the product recall decision-

making process. This multi-perspective approach also allowed us to juxtapose the industry and the 

regulator perspectives, and understand how the intended policies were actually implemented by 

managers.  
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Table 3.1 Interview Process and Research Phases 

 
Phase 
(Year) Mode Participants Organization Duration Main Objectives Section 

Phase I  
(2012-2013) 

Exploratory 
unstructured 
interviews 

- VP, Corporate Global 
Quality  
- VP, Corporate Quality 
- Plant Manager 

Focus Firm: Fortune 
500 medical device 
firm  

3 x 3 
hours 

 
* Develop an 
understanding of: 
- Medical device industry 
and its supply chain 
- Recall policy, process 
and main participants 
- Identify broad list of 
potentially relevant factors 
 

3.2.1 Director of Quality Fortune 500 medical 
device firm 4 hours 

Director of Analytics  FDA 2 hours 

Phase II 
(2013-2014) 

Unstructured 
& Structured 
interviews 

- VP, Corporate Global 
Quality  
- VP, Corporate Quality 
- Plant Manager  

Focus Firm: Fortune 
500 medical device 
firm 

6 hours 

 
* Select final list of factors 
 

3.2.3 
 

Phase III 
(2014) Experiment 

- 167 managers across 
four functional areas 
from focus firm. 
 

Focus Firm: Fortune 
500 medical device 
firm 

2 hours 

 
* Develop subject pool list 
* Finalize research design, 
process and timing 
* Execute experiment  
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All industry participants held managerial and/or executive level positions and had 

significant experience in making recall decisions. Our interviews began with a focus on the medical 

device industry in general, and its supply chain in particular. A simplified medical device supply 

chain is depicted in Figure 3.1. While not all medical devices follow this exact flow, a majority do 

(e.g., hip or knee replacements, cardiac stents and pacemakers, hearing aids, prosthetics). 

Manufacturers purchase from suppliers, manufacture devices and distribute to physicians. Devices 

can either be transferred to sales representatives, who then sell products to physicians on behalf of 

the company, or sold directly to physicians. The physician normally chooses which products to use 

for their patients. The physician and the patient are considered important but separate customers in 

this supply chain. The end customer who actually uses the product is referred to internally in a 

medical device company as the “patient customer”. This terminology emphasizes the importance 

of patients, each being a recipient of valuable life-saving or life-enhancing technology which has 

its root within the company. In contrast, the “physician customer” is also important but has a 

different role in the supply chain. The physician customer makes the purchasing decision, observes 

product performance such as product quality and features, and provides frequent feedback to 

company managers. The patient customer is not the source of revenue or product performance 

feedback, but, unlike the physician, is physically impacted by product quality. 

Physician and patient customer complaints are the most common signal of product defects. 

Physicians report defects to the company as they occur during use or implant of the medical device, 

or when a patient suffers a negative health episode due to device malfunction. Quality assurance 

managers regularly monitor and consolidate these signals to provide an integrated view of field 

product performance to corporate leadership. When these signals indicate a decline in quality 

performance, they may initiate a product recall meeting. Product recall meetings bring together key 

functional area representatives (e.g., quality, manufacturing, clinical, medical) to review 

performance data including conditions in which product failures have occurred, impact of failures 

on the patient customer, and current failure rates compared to predicted failure rates. The outcome 

of a recall meeting is not necessarily one consolidated recommendation, but can be a list of 

recommendations by each functional area. Individuals can recommend no recall, which by default 

equates to continued monitoring of product quality, or recall. Recall recommendations by 

functional area are forwarded to executive leaders who make the final recall decision; their decision 

is heavily influenced by the recommendations from the product recall meeting. A recall decision 

leads to an immediate cessation of product shipments, a notification to all affected customers, a 
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formal communication to the FDA, and a detailed plan to retrieve or repair all affected products. 

 
Figure 3.1 Simplified Medical Device Supply Chain 

 
 
 
 
 
 
 
 
 
 

 

 

In our interviews, industry participants described the recall process in extensive detail, and 

shared their individual and collective experiences in making and implementing recall decisions. 

They gave examples of recalls that had gone well, and those that did not go as well, and conjectured 

on characteristics that may distinguish the two. This informal story-telling helped us hone in on an 

initial list of implicit factors that might exert influence on the actual recall decision. At the FDA, 

our main participant was the senior director of risk management at the Center for Device and 

Radiological Health (CDRH), the FDA division responsible for medical devices. Our in-depth 

interviews with the FDA director helped us understand the recall process and the main participants 

from a regulator’s perspective. The director also outlined the stated guidelines regarding recall 

requirements, and potential conflicts that managers may face in making recall decisions. 

At the end of phase I, we had developed an extensive understanding of the context in which 

the recall decision is made, the process used in making the recall decision, and the main participants 

and their roles. Together with our industry partners, we also developed an initial list of factors that 

were believed to influence the recall decision, but which were not explicitly delineated as recall 

criteria by the FDA. See Table 3.2, column 2 for the full list of initially considered factors. 

Component Suppliers Manufacturing Firm 

Physician Customer Patient Customer 

Firm Sales 
Representative 
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3.2.2 Mapping Theory to Factors 
 

To put the initial list of factors into theoretical context, we reviewed relevant behavioral 

literature to see whether the factors mapped to prior theories. In doing so, we recognized that the 

factors naturally fell into two distinct categories, situational and dispositional. We found several 

studies that had categorized decision-making factors similar to ours into these two groups (Kacmar 

et al., 2004; McNeely and Meglino, 1994; Jones, 1991; Newton and Keenan, 1991). For example, 

Jones (1991) studied ethical decision making in organizations, a closely related topic to product 

recall decisions. He concluded that situational and dispositional factors, related to a decision and a 

decision-maker, are pertinent and significantly influence important decisions in organizations. This 

distinction also fits with what we learned from the managers we interviewed. Specifically, each 

recall decision is made within the context of a specific product failure situation. A certain failure 

occurs in a specific environment and the outcome of the failure is manifested in a unique way. 

Although FDA criteria specifies some situational factors that could be used to make the recall 

decision (e.g., risk of injury, gross deception, defective product), our interest is in situational 

attributes that have not been explicitly specified, and yet may influence this decision.  

Independent of the details surrounding the possible recall situation, each manager also 

brings a unique perspective that might predispose him/her in this decision. Several of the 

interviewees indicated it was very likely that certain dispositional criteria, unique to each manager, 

and separate from the situational specifics of the product failure, are influential in this decision. 

These dispositional decision criteria are also not specified in the FDA guidelines as relevant. Table 

3.2 (column 3) shows how the initial factors identified in phase 1 breakdown between the situational 

versus dispositional categories. 

3.2.3 Phase II: Factor Selection 
 

The objective of phase II was to narrow the list of factors to a final set that would be used 

in the experiment (phase III). We conducted additional structured and unstructured interviews, 

analyzed each potential factor in more detail, and revisited related theory. The iteration between 

interviews and theory helped us discern which factors showed the highest potential to provide 

helpful insights for our industry partners while also having strong theoretical justification. 

Through this process, we narrowed the list from fifteen to eight factors. To provide insight 
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into how factors were eliminated, we briefly discuss a few examples. One of the situational factors 

we excluded from our final list was “the risk of harm to the patient customer.” Managers were fairly 

confident that this factor would have a strong positive impact on the likelihood to recall and so 

were not as interested in testing its effect. Two other excluded situational factors are related to the 

“opinion of others” (e.g., the FDA or a key functional area such as the quality department) in 

making the decision. These were also deemed less interesting to the industry representatives since 

it was unclear how one might overcome such a bias (or if one would want to) in an actual recall 

decision where FDA and quality managers play critical roles.  

Two dispositional factors were also excluded. The influence of managerial incentives on 

the recall decision was dropped since recent recall research has already identified managerial 

incentives as a significant predictor of the recall decision (Wowak et al. 2014). Managers’ empathy 

with the patient customer was excluded because our industry partners believed there was little doubt 

it would to lead to a higher likelihood of recall.  

The final factor list consists of three situational and five dispositional factors (Table 3.2, 

column 5). These were each deemed to be of great interest to our industry partners and were firmly 

grounded in theory (see Section 3.3).  
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Table 3.2 Factor Development 

(1)              (2)        (3) (4) (5) 

Phase I 
Interviews Î # Initial List of Factors             Î Mapping to Theory     Î Phase II 

Interviews Î   Final List of Factors 

    Situational Dispositional  Situational Dispositional 
  1 Risk of harm to patient customer X     
  2 Recall opinion of FDA X     
  3 Recall opinion of Quality department X     
  4 Recall opinion of physician customer X   X  
  5 New vs. established products X     
  6 Root cause understanding of failure X   X  
  7 Functional area responsible for failure  X     
  8 Physician’s ability to detect defect  X   X  
  9 Firm’s perceived relationship with FDA  X   Xa 
  10 Managerial incentives (e.g. stock options)  X    
  11 Gender of manager  X   Xa 
  12 Years of experience of manager  X   Xa 
  13 Manager’s empathy for patient customer  X    
  14 Functional background of manager  X   Xa 
  15 Reflection in decision making  X   Xb 

a Dispositional factors used as control variables 
b Cognitive reflection test used to examine this factor 
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3.3 Hypothesis Development 

Physician Concern 
We label the first situational factor Physician Concern because it examines the effect of an 

influential and outspoken physician customer on the decision to recall. The company may cater to 

the opinion of an influential physician because they can have significant financial impact on the 

company’s revenue as they frequently make the purchasing decision on behalf of their patients and 

may have clout with other physician customers. Our partner managers believed that close 

relationships between the company and certain physician customers may lead to recall decisions 

which are not necessarily driven by data and analysis, but by close customer relationships.  

Researchers have identified the tendency of managers to respond to the most salient 

customer feedback, and ensure that the “squeaky wheel gets the grease.” (Bendoly et al., 2010; Ma 

et al., 2015; Mitra and Golder, 2006). For example, Ma et al. (2015) examine a large panel dataset 

of complaints via Twitter over the course of 10 months. They analyze thousands of individual 

customer complaints and find that firms take significant actions as a direct response to individual 

outspoken customers. This tendency to respond to one vocal customer may also be attributable to 

salience bias, which occurs when decision-makers respond to the most noticeable feedback, instead 

of aggregating all relevant feedback and taking a holistic view of the data. For example, one’s 

perceived probability of a traffic accident is immediately raised after one observes a traffic accident 

(Tversky and Kahneman, 1974). Salience bias has also been observed in marketing studies which 

demonstrate that the prominence or salience of a brand in one’s memory is significantly related to 

consumer product choice. (Hutchinson, 1983; Alba and Chattopadhyay, 1986; Hauser and 

Wernerfelt, 1990). Relatedly, a manager’s perception of the need for a recall may increase following 

a customer complaint from one outspoken customer. 

One recall example provided by a company we interviewed illustrates this relationship: A 

physician demanded a conference call with the manufacturing manager (a very unusual request) to 

ask specifically how an obvious and visible plastic coating defect on a catheter could have occurred. 

In the course of the conference call, the upset physician demonstrated dissatisfaction with the defect 

and implied that if he observed further defects, he would elevate his concerns to the FDA. Negative 
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opinions by physician customers such as this can escalate the significance of a product defect and 

a product recall. It did so in this specific case. While this example demonstrates how one vocal and 

influential physician can influence a recall decision, it is noteworthy that the FDA does not specify 

this as recall criteria. Additionally, our partner managers were interested in examining the influence 

of this factor because they believed that one individual physician customer’s opinion should not 

lead to a recall, though anecdotal evidence suggested it may have a significant effect. We therefore 

hypothesize: 

 

Hypothesis 1: Physician concern related to a product defect results in a higher likelihood 
of a recall. 
 
 

Defect Detectability 
Defective medical devices vary in their level of detectability prior to use by the physician. 

The second situational factor we examine is the level of defect detectability by the physician 

customer prior to use of the product (Defect Undetectable). Certain defects, such as a cracked 

screen on an electronic medical device, are highly detectable, while others, such as a software 

coding error, are often undetectable. Our interviews revealed that managers faced an interesting 

conflict related to the level of pre-use physician defect detectability. On the one hand, observable 

defects may decrease the physician’s quality opinion of the company, potentially leading managers 

to be more likely to recall if the defect is detectable by the physician. On the other hand, when a 

physician can detect a defect pre-use, the physician may serve as a type of final quality control step 

and not use the defective device on the patient customer; reducing the risk of patient harm. This 

reduced risk of harm may lead managers to be less likely to recall, even though the product is 

actually defective. While all the managers we interviewed were convinced of this factor’s relevance 

in the decision, they were split on how it would influence the recall decision. We develop competing 

hypotheses to address this potential conflict below. 

 
Defect Detectability and a Higher Recall Likelihood 

Theoretical and empirical evidence in marketing research demonstrates that it pays to 

please the customer. This is especially true when the customer makes the purchasing decision for a 

company’s products. Companies realize higher profitability (Anderson et al., 2004, 1994), stock 
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price (Ittner and Larcker, 1998), return on investment (Anderson and Sullivan, 1994), customer 

retention (Gustafsson et al., 2005), and repurchase behavior (Mittal et al., 2011), among other 

benefits, as customer satisfaction increases. In our context, providing physician customers with 

high quality products could yield both short and long-term benefits, while poor product quality 

could have the opposite effect. Marketing research in this domain is too vast to fully review here, 

but we provide a few relevant examples to support our hypothesis.  

Anderson et al. (2004) study the relationship between a broad customer service index 

(American Customer Satisfaction Index) and performance in 200 Fortune-500 firms, and find that 

higher customer satisfaction is positively related to Tobin’s Q, which is frequently used as a 

forward-looking measure of shareholder value. This relationship holds across industry type and 

size. Using a related measure of customer service, Fornell et al. (1996) find that product quality is 

one of the most influential product attributes associated with customer satisfaction, even more than 

product price. Mittal et al. (2001) investigate the effects of repurchase behavior for over 100,000 

automotive products customers. They find that more satisfied consumers have a stronger intention 

to repurchase. Gustafsson et al. (2005) also study the relationship between customer satisfaction 

and retention, and find that in a broad telecommunications services survey, these two concepts are 

positively relate, satisfied customers are more likely to remain as customers. As a set, the literature 

on customer satisfaction is consistent on two points: satisfied customers are more likely to be 

retained as repeat customers, and they are a signal for broader firm success, such as increasing 

shareholder value. Managers may be more likely to recall a defective product that is detectable in 

order to increase customer satisfaction, which should lead to higher customer retention and future 

profits. Thus we examine the following hypothesis: 

 

 Hypothesis 2A: A detectable product defect results in a higher likelihood of a recall 

 

Defect Detectability and a Lower Recall Likelihood 
However, managers are not only concerned with the opinion of the physician customer, but 

also with the safety of the patient customer. Interviewees we spoke with crystallized the idea that 

managers may actually be less likely to recall if a defect is more detectable to the physician pre-

use because there is an implied reduction of patient harm. In such a case, managers seem to view 
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the physician as a final quality control screen for the product, and rely on the physician to observe, 

and not use, a defective product, safeguarding the patient. 

In an actual recall scenario, a product was accidentally packaged upside down in the sterile 

package. This product was equipped with external hooks to anchor in the blood vessel of the patient. 

If the physician inserted the device upside down, the patient would likely die from a torn artery. 

Additionally, this product was new to physicians, so it was unlikely they would recognize the upside 

down orientation, leading to a risk that the packaging error would not be detected and the patient 

would be harmed. The risk of this defect not being detected played an important role in this recall 

decision. Some of our partner managers strongly believed that when a defect is detectable to the 

physician pre-use, managers may be less likely to recall. Accordingly, we hypothesize: 

 
Hypothesis 2B: A detectable product defect results in a lower likelihood of a recall. 

 

Support for hypothesis 2A would indicate that the physician’s assessment of the quality of 

the company’s products is possibly more important to managers than protecting the safety of the 

patient customer. In this case, if a defect is detectable, a recall is needed to protect the company 

from a poor quality assessment by the physician, even though patient customers are possibly at a 

lower risk. Support for hypothesis 2A would also indicate that if the product defect is undetectable, 

the physician will not notice, and even though patient customers may be at risk, managers would 

decide that a recall is not needed.  

Support for hypothesis 2B would indicate that the safety of the patient customer is possibly 

more important than the physician’s assessment of the quality of the company’s products. In this 

case, if the product defect is detectable, the patient customer is at a low risk and a recall is not 

needed, even though defective product is consciously being kept in the marketplace. Support for 

hypothesis 2B would also indicate that if a defect is undetectable, the physician is unlikely to screen 

out defective products, exposing the patient customer to possible harm; leading managers to decide 

that a recall is needed.  

 

Defect Root Cause 
Recalls can be required well before managers fully understand the cause of the failure, 

though it is possible that knowledge of root cause may make managers more likely to recall. The 
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level of understanding related to the root cause of the defect (Root Cause Understanding) was also 

deemed to be a potentially relevant situational factor for this study. While managers we interviewed 

recognized that they frequently waited to comprehensively understand the root cause of a defect 

before making a recall decision, they did not know how prevalent it was among recall decision 

makers. They hoped that by including this factor in the study, they would better understand its effect 

on the recall decision.  

Understanding why something occurs is the “basic spring of action” in human life (Weiner, 

1979). Attribution theory (Weiner, 1979, 1985) informs us that individuals desire to understand the 

cause of an event. The importance of attributing a cause to an event has been demonstrated in 

multiple settings including third-party logistics failures (Oflac et al., 2012), customer satisfaction 

related to service failures (Anderson et al., 2009), and new product designs (Schreier, 2006). 

Uncovering true root cause is a critical step in understanding and resolving a product defect. In the 

absence of a definable cause, product recalls can be challenging, though still necessary. When root 

cause is not understood, the “bounding” of the problem (e.g., which units should be recalled) is 

difficult, and can force the company to recall more products than may be necessary, leading to 

higher recall costs and more hassle for patient customers. When root cause is understood, the 

solution for overcoming the product quality problem is likely more effective and the affected units 

can be better isolated, leading to lower recall costs. Product engineers and other recall decision-

makers search avidly for potential causes for failures, and without a well-understood root cause, 

managers may be more likely to choose a “wait and see” approach, hoping that product failures 

dissipate. It is possible that at the same failure rate, managers who understand root cause would be 

more likely to take action and recall than managers who do not understand root cause. Attribution 

theory would lead us to believe that this relationship may exist in this decision. 

One applicable example from our interviews relates to an electronic cardiac device that 

was shorting out and experiencing premature battery depletion. A certain number of devices were 

failing in the field, however, engineers did not understand the reason for the failures. It was clear 

through data analysis that a sizable increase in field failures had occurred, but a recall was delayed 

until root cause could be found. Apparently some decision-makers were either not convinced that 

a real product quality problem existed, or they were hesitant to initiate a broad based recall that 

affected so many units. An engineering analysis finally pinpointed a process change at an integrated 
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circuit manufacturing step as the source of the failure. This discovery led to the immediate decision 

to recall, though the recall was limited in scope because they could bound the high-risk units to a 

certain process change. However, the delay between when failures first surfaced and when the root 

cause was identified left additional customers at risk and some customers were negatively affected. 

This example indicates that root cause understanding may be an important situational factor in this 

decision, even though it is not specified by the FDA as relevant for the recall decision. We therefore 

hypothesize: 

 

Hypothesis 3: Root cause understanding of a product defect results in a higher likelihood 

of a recall. 

 

Individual Differences and the Recall Decision 
Hypotheses 1-3 describe possible situational factors that may impact the recall decision. 

However, it is likely that individual differences, or dispositional factors, will also impact this 

decision. The decision-makers responsible for recalling a product are heterogeneous in many 

aspects. They have different educational and training backgrounds and represent different 

functional areas with different incentive structures. The factor selection process highlighted five 

dispositional variables that could be used in this study, per Table 3.2. Four of these variables (gender, 

functional area, experience and relationship with the FDA) were viewed by our partner managers 

as relevant control variables for the experiment, but they did not have sufficient managerial interest 

to be directly hypothesized. However, our partner managers had a particular interest in the effect 

of cognitive reflection on the likelihood of recall, and as a result, this factor is hypothesized in the 

study.  

In complex decisions such as these, one temptation managers face is to wait for more data 

to accumulate. More time and more data may allow managers to make better, more informed 

decisions. Our interviews indicated that some managers may fall prey to the “analysis paralysis” 

trap, often postponing their recall decision until more data is collected and more failures occur. On 

the other hand, another group of managers make recall decisions very quickly and seldom voice 

the need to wait for additional data. These managers were described as making “knee-jerk reactions” 

to the recall decision. Cognitive reflection may be a lens to distinguish between these two groups 
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of managers; those who tend to want more data that they can reflect upon versus those who make 

more intuitive judgements.      

The Cognitive Reflection Test (CRT) (Frederick, 2005) is one mechanism that 

distinguishes individual decision-makers according to their level of cognitive reflection and may 

be useful in understanding a subject’s propensity to recall. In other words, it may help in separating 

the “analysis paralysis” managers from the “knee-jerk reaction” managers. The test involves three 

questions that have immediately apparent and seemingly intuitive answers that are all incorrect; all 

three questions require reflection to be answered correctly. To do so, subjects must overcome their 

impulsive response and reflect on what the correct answer should be. Frederick (2005) proposes 

the CRT as a measure of cognitive reflection that is positively correlated with similar tests such as 

the Scholastic Aptitude Test (SAT), the American College Test (ACT), and the Wonderlic Personnel 

Test (WPT) (Frederick, 2005). The CRT has been used as a means to differentiate between 

impulsive and reflective subjects in prior experiments (Oechssler et al., 2009; Moritz et al., 2014). 

The CRT has also been used to study individual differences in Newsvendor ordering behavior 

(Moritz et al., 2013), forecasting behavior (Moritz et al., 2014), moral decision making (Paxton et 

al., 2012), the tendency to fall victim to common heuristics and biases in decision making (Toplak 

et al., 2011), cognitive abilities for genetically inherited traits (Cesarini et al., 2012), and rulings by 

judges (Guthrie et al., 2007). Theory indicates that managers who score high on the CRT may be 

those managers who wait for more data before making recall decisions. This leads to the following 

prediction. 

 

Hypothesis 4: Individuals with higher cognitive reflection will have a lower likelihood of 
recall. 

3.4 Experimental Design 

To test our hypotheses, we performed a controlled experiment using managerial subjects 

from a leading US medical device company. We chose to study our questions in the US medical 

device industry for several reasons. Recalls in the medical device industry are generally voluntary 

in nature, such that managers make the recall decision at their own discretion unlike other industries 

where the regulatory body monitoring the industry mandates product recalls. For instance, the 



  
 

62 
 
 
 

National Highway Traffic and Safety Administration frequently mandate recalls in the automotive 

industry.23 As mentioned previously, FDA recall criteria are vague, indicating a tangible benefit of 

establishing clarity in this context. Medical device recalls also have significant public health 

consequences, which makes understanding how managers reach the recall decision even more 

critical. Finally, this industry has a significant economic footprint as it is expected to exceed $130 

billion in market size by 2016.24 

The partner company used for our subject pool is one of the top 20 medical device companies 

by revenue and is in the top 200 of the U.S. Fortune 500 companies. It operates hundreds of 

facilities in dozens of countries, and similar to its main competitors, experiences recalls on a 

reasonably regular basis. It has undergone many small and large recalls and has a mature recall 

decision-making process.  

Our study utilizes experimental subjects who are managers that have experience making 

recall decisions. We chose managers instead of students as experimental subjects because of the 

highly contextualized and unique nature of a medical device recall decision. Past experimental 

research indicates that while student and manager subjects have comparable performance in many 

tasks, certain situations may require managerial subjects (Frechette, 2012; Potters and Van Winden, 

2000). In his review of 13 experiments where students and practitioners were used as subjects, 

Frechette (2012) compared student and manager results to each other and to the theoretically 

predicted responses. He concluded that using managers as subjects, when the context is unfamiliar 

to students can “prove very insightful in ways that studying undergraduates is not…allowing us to 

learn something that could not have been learned with students.” (Frechette, 2012).  

A team headed by the company’s Corporate Global Vice-President of Quality compiled a 

list of potential subjects for the experiment. The guiding principle in putting the list together was 

to include representatives from all relevant functional areas (quality, manufacturing, clinical, 

medical) involved in product recall decisions. Individuals within those functional areas with 

significant product recall decision making experience were then randomly selected to participate. 

The final list consisted of 287 individuals who were each sent an email requesting participation in 

the study (Appendix A). The email was sent from the Corporate Global Vice-President of Quality 

                                                        
23 http://www.recalls.gov/ 
24 http://selectusa.commerce.gov/industry-snapshots/medical-device-industry-united-states 
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(the most senior quality manager at the company). This message explained the nature and objective 

of the study, included a link to the experiment, and clarified that all responses would be anonymous. 

A follow-up reminder email was sent 11 days after the initial email (Appendix A). At the end of the 

study duration, 167 subjects had participated in the experiment with complete responses. The 

experiment was conducted completely online using Qualtrics survey software, and as is typical for 

professional subjects, they were not compensated for their participation.  

To participate, a subject first navigated to the Qualtrics website by double-clicking on the 

link embedded in the email. The first screen described the experiment and then asked for consent 

before proceeding. Once consent was given, the subject moved to the second screen, where he/she 

was randomly assigned to one of the treatments and was presented with the associated recall 

decision scenario. The second screen was visually divided into three sections: the top of the screen 

contained a baseline scenario that described a product failure situation in which a recall was 

possible but not obvious. The baseline scenario described an increasing failure rate on a cardiac 

medical device to ensure that the scenario presented a failure which was both critical in nature (life 

sustaining device) and was technologically complex (cardiac devices are highly technical). The 

baseline scenario was constant in all treatments, and was similar to real-life recall scenarios 

previously described in our interviews (see Appendix A for baseline scenario and all experimental 

text used). The second section on the screen below the baseline scenario contained text associated 

with the situational factors in that treatment. Finally, in the third section at the bottom of the screen, 

the subject was asked to select whether he/she would recommend recalling or not based on the 

information provided. After selecting one of these two options, the subject was taken to the third 

screen which contained questions related to the dispositional control variables and the CRT. The 

dispositional control variables included in the study were: gender, functional area, perceived 

relationship that the company maintained with the FDA, and experience at the company. These 

control variables are described in more detail in Section 3.6 below. The three CRT questions 

followed the dispositional control variables. After answering the CRT questions, subjects were 

invited to enter optional comments regarding the experiment in a free text section at the bottom of 

the screen.  

The experimental design and the number of subjects per treatment are illustrated in Table 

3.3. We ran a full factorial (23=8) set of treatments, including low and high levels for all three 
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situational factors. The three situational factors coincided with the main effects hypotheses 

(Physician Concern, Defect Undetectable, and Root Cause Understanding). We coded “Defect 

Undetectable” so that the high level of this factor is consistent with a defect that is not detectable 

to the physician customer pre-use. In this case, a negative and significant beta coefficient on “Defect 

Undetectable” would indicate support for Hypothesis 2A, while a positive and significant beta 

coefficient would indicate support for Hypothesis 2B. 

 
Table 3.3 Experimental Design and Number of Responses per Treatment 

 
 Root Cause Understanding  
 Low High  
 Defect Undetectable Defect Undetectable Total 
Physician Concern Low High Low High  
Low 22 19 20 22 83 
High 20 21 21 22 84 
Total 42 40 41 44 167 

3.5 T-test Results 

To measure the effect of each situational factor, we computed the likelihood of recall as the 

percent of subjects deciding to recall within each treatment (Figure 3.2). We first discuss visual 

trends observed in Figure 3.2, and then present t-test results comparing the percent of subjects 

deciding to recall at low and high levels of each situational factor. The first factor, Physician 

Concern, does not appear to impact recall likelihood, as there is no visible trend in recall likelihood 

between the white and shaded bars in Figure 3.2. Defect Undetectable displays a possible 

relationship with recall likelihood, as the two sets of Defect Detectable bars are both lower than the 

corresponding Defect Undetectable bars, indicating that a lower percentage of subjects recalled 

when the defect was detectable to the physician. Finally, Root Cause Understanding also appears 

to influence recall likelihood, as the two sets of Low Root Cause Understanding bars are lower than 

the corresponding High Root Cause Understanding bars.  
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Figure 3.2 Situational Factors and Recall Likelihood 

 
 

To test the statistical significance of these relationships, we conduct a t-test for each factor. 

The null hypothesis for these tests is that the recall likelihood at each low factor level equals the 

recall likelihood at each high factor level. Table 3.4 displays t-test results for each situational factor. 

Physician Concern does not impact the recall likelihood, as there is no statistical difference between 

the Physician Concern low and high groups in the likelihood to recall (p-value=0.827), providing 

no support for Hypothesis 1. When a defect is undetectable (Defect Undetectable high), subjects 

are more likely to recall than not recall (p-value=0.028), providing no support for Hypothesis 2A, 

but support for Hypothesis 2B. The more that is understood about the root cause of the defect (Root 

Cause Understanding high), the more likely the subject is to decide to recall (p-value=0.005). We 

therefore also support Hypothesis 3 with these results.  

Table 3.4 T-test Results for Recall Likelihood and Situational Factors 

 
Factor  Factor Levelsa   

 Low High  

 Recall N % Recall N % p-valueb 

Physician Concern 24 83 29 23 84 27 0.827 

Defect Undetectable 17 83 20 30 84 36 0.028 

Root Cause Understanding 15 82 18 32 85 38 0.005 
a Number and percentage of subjects deciding to recall in each cell 
b Null hypothesis: Likelihood of recall at low factor level = Likelihood of recall at high factor level 
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To test Hypothesis 4, we pool across treatments and group subjects by their individual CRT 

scores. Subjects either answered zero (10.7%), one (13.2%), two (25.1%), or all three questions 

correctly (51%). To separate CRT scores into low and high categories, enabling us to test 

Hypothesis 4, we classified CRT scores of zero or one as the low CRT category and scores of two 

or three as the high CRT category. This categorization is consistent with how CRT scores are 

grouped in prior studies (Hoppe and Kusterer, 2011; Oechssler et al., 2009; Frederick, 2005). 

Before assessing the impact of low and high CRT, we verified that the random assignment of 

situational factor levels was not skewed towards low or high CRT. We conducted Chi Square tests 

and confirmed that there was no significant difference between the levels of each situational factor 

and low and high CRT. 

Similar to our analysis for situational factors, we first plot the data visually and observe 

differences of recall likelihood across low and high CRT scores, and then confirm the visual trends 

statistically using a t-test. Figure 3.3 displays the likelihood of recalling at low and high CRT. 

Subjects who answered zero or one CRT questions correctly had an equal likelihood of recalling 

and not recalling, suggesting that in this category, a subject’s decision to recall was primarily a 

random chance. In contrast, subjects who answered two or three CRT questions correctly were 

much less likely to recall (21% Recall vs. 79% No Recall), implying that there might be underlying 

causes to explain the systematic variation. 
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Figure 3.3 Dispositional Factor and Recall Likelihood 

 
To confirm these observations, we present the results of a t-test in Table 3.5. The null hypothesis 

for the t-test is that the recall likelihood is the same across low and high CRT categories. The p-

value for this t-test is p=0.000, allowing us to reject the null hypothesis. High CRT subjects were 

significantly less likely to recall than low CRT subjects. We support Hypothesis 4. 

 
Table 3.5 T-test Result for Recall Likelihood and Dispositional Factor 

    
Low CRTa High CRT  

Recall N % Recall N %  p-valueb 
20 40 50 27 127 21 0.000 
a Number and percentage of subjects deciding to recall in each cell 
b Null hypothesis: Likelihood of recall at low CRT = Likelihood of recall at high CRT 

3.6 Logistic Regression Results 

To ensure that the hypothesized relationships examined in t-tests hold after incorporating 

additional dispositional control variables, we regressed the likelihood of recall on the situational 

and dispositional factors. Regression analysis ensures that the observed relationships in the t-tests 

hold after including the dispositional control variables collected in the study (gender, functional 
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area, relationship with the FDA, and experience). Because the dependent variable (recall likelihood) 

is a dichotomous choice variable, we used logistic regression. Logistic regression predicts the 

likelihood of an outcome (a recall decision) based on changes in continuous or dichotomous 

predictor variables. Logistic regression results are interpreted as the change in the likelihood of the 

choice after exponentiation of the beta coefficient (1-expβ). We describe the dispositional control 

variables and how they were measured in more detail below. 

We captured the gender of each respondent (Male) as an indicator variable with female as 

the reference category to control for possible differences that may exist between genders. Prior 

CRT studies have found a significant difference between the number of CRT questions answered 

correctly by males and females (Frederick, 2005; Oechssler et al., 2009; Hoppe and Kusterer, 2011). 

We learned in our interviews that managers in the quality department often view themselves as 

protectors of the customer within the company and may be more likely to decide to recall than 

subjects from other functional areas. We captured functional area and categorized the subjects into 

quality and non-quality and measured this as an indicator variable (Quality) with non-quality 

functions as the reference category. The perceived relationship that the company has with the FDA 

could also impact decision-makers in the recall decision. We captured this relationship as whether 

or not the subject perceived their company’s relationship with the FDA as collaborative, average or 

confrontational. Because of the small percentage of responses in the confrontational category (5%), 

we grouped average and confrontational as the reference category and created an indicator variable 

for collaborative (Collaborative FDA rel.). It is also possible that the length of experience a subject 

has in the company may affect their recall decision. To control for this, we measured the number 

of years of experience that the manager had at the company with four categories (0-2 years at 

company, 3-5 years at company, 6-10 years at company, More than 10 years at company) and 

created indicator variables treating the most experience (More than 10 years at company) as the 

reference category.  

We provide a descriptive summary of the dispositional control variables in Table 3.6. 

Approximately 70% of the subjects were male, and 60% belonged to the quality department (with 

the other 40% distributed between operations, clinical and the medical departments). 57% of the 

subjects perceived their company’s relationship with the FDA to be collaborative. The number of 

years of experience subjects had at the company was fairly evenly distributed between new hires 
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(0-2 years) to very experienced personnel (more than 10 years at the company).  

 

Table 3.6 Dispositional control variables and percentage of responses 

 
Gender      Functional    

Area 
Relationship       
with FDA 

Years at      
the Company 

Male 71.2% Quality 60.0% Collaborative 56.9%    0-2  18.6% 
Female 28.8% Operations 15.6% Average 37.7%    3-5  25.1% 
  Clinical  9.0% Confrontational   5.4%   6-10 34.1% 
  Medical 4.2%      >10  22.2% 
  Other 11.2%   
 
 

    

Finally, we controlled for the time it took a subject to answer the questions in the 

experiment. It is possible that subjects who rushed through the experiment were more or less likely 

to decide to recall, compared to those who patiently read all the text thoroughly. Qualtrics 

automatically recorded the time each subject took to answer the questions: it began the time when 

the subject opened the first screen of the experiment (consent request) and stopped the clock when 

the subject answered the last question and submitted the results. The mean response time in minutes 

was 17.65, with a minimum of 1, a maximum of 372, and a standard deviation of 33.3.  We used 

the time taken by including the natural log of the response time (Ln_Response_time) as a control 

variable in our analysis.  

We performed regression analysis in three steps. We first included situational factors (Table 

3.7, column 1), then added CRT score (column 2), and finally added dispositional control variables 

(column 3). Per column 1, Defect Undetectable and Root Cause Understanding are both positive 

and significant predictors of recall likelihood while Physician Concern is not significant, 

supporting the conclusions in the t-test analyses. The likelihood of a recall increases by 48% 

(exp0.39=1.48) when the defect is undetectable (Defect Undetectable high) compared to when the 

defect is detectable. When the root cause of the defect causing the product failure is better 

understood (Root Cause Understanding high), the likelihood of a subject choosing to recall 

increases by 65% (exp0.50=1.65), compared to when the root cause is not understood.  

To measure the effect of high CRT, we used an indicator variable, CRT High (2,3), and 

treated CRT Low (0,1) as the reference category. The results in column 2 show that compared to 

subjects who answered 0 or 1 CRT questions correctly, subjects who answered 2 or 3 CRT questions 
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correctly (CRT High (2,3)), were 70% less likely to recall (exp-1.18=0.30), confirming t-test results 

related to CRT  

In column 3, we see that none of the dispositional control variables significantly predict 

recall likelihood with the sole exception of Collaborative FDA rel., which is marginally significant 

(p<0.10). The result implies that when a subject perceived their company’s relationship with the 

FDA to be collaborative, he/she was less likely to make the recall decision. 

 
Table 3.7 Logistic Regression- Recall Likelihood 

   
     1 2    3 
Physician Concern 
 

-0.05 -0.08 -0.09 
 (0.18) (0.19) (0.19) 
Defect Undetectable 0.39* 0.35+ 0.36+ 
 (0.18) (0.19) (0.19) 
Root Cause Underst. 0.50** 0.46* 0.43* 
 (0.18) (0.19) (0.20) 
CRT High (2,3)  -1.18** -1.43** 
  (0.41) (0.45) 
Male   0.27 
   (0.42) 
Quality   -0.32 
   (0.41) 
Collaborative FDA rel.   -0.67+ 
   (0.40) 
0-2 years at company   -0.04 
   (0.55) 
3-5 years at company   0.64 
   (0.62) 
6-10 years at company   -0.26 
   (0.57) 
Ln_Response time   0.20 
   (0.22) 
Constant   -1.04*** -0.18 -0.18 
   (0.19) (0.35) (0.85) 
Observations    167   167   167 
Wald Chi2    11.77   18.38   23.51 

  Standard errors in parentheses + p<0.10, *p<0.05, **p<0.01 
  Robust standard errors used 

3.7 Post-Hoc Analysis: Moderating effects of CRT  

It is noteworthy that the most influential factor in the t-tests and regression analyses, both 

in statistical significance and effect size, is a subject’s CRT score. High CRT subjects, who by 
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definition reflect more before making a decision, more frequently decided not to recall compared 

to low CRT subjects. This could be because more reflective subjects have more patience and choose 

to delay the recall decision pending further data analysis. The unanticipated importance of CRT 

compared to all other factors in the experiment makes it important to perform additional analysis 

to delineate the role of a subject’s CRT score on the relationships between the situational factors or 

the dispositional control variables, and the likelihood of recall. Thus, we conducted a series of post-

hoc analyses by splitting our sample based on CRT scores. We reexamined the hypothesized 

relationships of the situational factors separately within low and high CRT categories. Similar to 

previous analyses, we first visually plotted these relationships, and then performed t-tests and 

logistics regression to statistically validate the results. 

The effect of CRT on the relationship between the situational factors and the likelihood of 

recall is shown in Figure 3.4. We can make a few observations. First, Physician Concern appears 

to remain insignificant in both low and high CRT categories, as the difference between the white 

and shaded bars in likelihood of recall appears random in both low and high CRT categories. Defect 

Undetectable appears to be somewhat significant in both low and high CRT while Root Cause 

Understanding seems to be more relevant in the CRT High (2,3) category than in the CRT Low 

(0,1) category. 

 
Figure 3.4 CRT Scores, Situational Factors, and the Recall Decision 

 
                CRT Low (0,1)                                         CRT High (2,3) 

 

 

We next repeated t-tests for the situational factors at low and high CRT categories. Table 
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3.8 displays t-test results for each situational factor after splitting the sample by low and high CRT 

scores. For ease of comparison, the first row for each situational factor (row a) in Table 3.8 repeats 

the results from the full sample t-test from Table 3.4. Rows b-c display the low and high CRT results, 

respectively. In the full sample, Physician Concern had no predictive significance on the likelihood 

to recall. This conclusion holds both at low and high levels of CRT. Defect Undetectable was a 

positive and significant predictor of recall likelihood in the full sample. This relationship does not 

persist in the CRT Low (0,1) category (p-value=0.531), and is only marginally significant in the 

CRT High (2,3) category (p-value=0.066). Root Cause Understanding was a positive and 

significant predictor of recall likelihood in the full sample, however this relationship only holds in 

the CRT High (2,3) category (p-value=0.006), and is insignificant in the CRT Low (0,1) category 

(p-value=0.752). 

 
Table 3.8 T-test Results for Recall Likelihood-Split on CRT Score 

Factor Row Sample                   Factor Levelsa 
   Low High  
   Recall N % Recall N % p-

valueb 
Physician Concern a Full sample 24 83 29 23 84 27 0.827 
 b CRT Low (0,1) 8 18 44 12 22 55 0.537 
 c CRT High (2,3) 16 65 25 11 62 18 0.348 
Defect Undetectable a Full sample 17 83 20 30 84 36 0.028 
 b CRT Low (0,1) 7 16 44 13 24 54 0.531 
 c CRT High (2,3) 10 67 15 17 60 28 0.066 
Root Cause Understanding a Full sample 15 82 18 32 85 38 0.005 
 b CRT Low (0,1) 7 15 47 13 25 52 0.752 
 c CRT High (2,3) 8 67 12 19 60 32 0.006 

    a Number and percentage of subjects deciding to recall in each cell 
    b Null hypothesis: Number of recall decisions at low factor level = number of recall decisions at high factor level  

 

We also repeated the logistic regression analysis after splitting the sample by CRT scores 

(Table 3.9). For comparison purposes, we include the full sample results from Table 3.8 in columns 

1 and 2 of Table 3.9. In the CRT Low (0,1) category, none of the situational factors are statistically 

significant (column 3). Only after the dispositional control variables are entered into the regression 

(column 4) does Defect Undetectable become positive and significant. Interesting relationships are 

observed in column 4 between the dispositional control variables the likelihood to recall for the 

CRT Low (0,1) category. Unlike the results in the full sample, all dispositional control variables 
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are significant in the CRT Low (0,1) category. Compared to female subjects, male subjects are 96% 

(exp-3.17=0.04) less likely to decide to recall. Compared to managers in non-Quality roles, managers 

in the Quality department are surprisingly 98% (exp-3.71=0.02) less likely to decide to recall. Those 

who perceive the company’s relationship with the FDA to be collaborative are 99.9% less likely to 

recall than those who perceive the company’s relationship with the FDA to be average or 

confrontational (exp-8.73=0.0001). Less experienced subjects, in comparison to those who had more 

than 10 years of experience at the company, are more likely to decide to recall, as all experience 

indicator variables are significant in the CRT Low (0,1) category. Response time is also a positive 

predictor of recall likelihood in this column. For CRT Low (0,1) subjects, taking more time to 

respond in the experiment is positively associated with a higher likelihood to recall. 

 

Table 3.9 Logistic Regression- Recall Likelihood-Split on CRT Score 

 Full Sample CRT Low (0,1) CRT High (2,3) 
     1    2    3     4    5     6 
Physician Concern 
 

-0.05 -0.09 0.21 -2.01+ -0.23 -0.22 
 (0.18) (0.19) (0.33) (1.04) (0.23) (0.24) 
Defect Undetectable 0.39* 0.36+ 0.22 1.39* 0.43+ 0.46+ 
 (0.18) (0.19) (0.33) (0.67) (0.23) (0.25) 
Root Cause Underst. 0.50** 0.43* 0.10 0.00 0.62** 0.59* 
 (0.18) (0.20) (0.33) (0.76) (0.24) (0.26) 
CRT High (2,3)  -1.43**     
  (0.45)     
Male  0.27  -3.17+  0.55 
  (0.42)  (1.68)  (0.58) 
Quality  -0.32  -3.71+  -0.38 
  (0.41)  (2.12)  (0.49) 
Collaborative FDA rel.  -0.67+  -8.73**  -0.35 
  (0.40)  (2.79)  (0.49) 
0-2 years at company  -0.04  10.31**  -0.42 
  (0.55)  (3.74)  (0.63) 
3-5 years at company  0.64  6.25*  0.37 
  (0.62)  (2.61)  (0.66) 
6-10 years at company  -0.26  14.58**  -1.41+ 
  (0.57)  (4.81)  (0.77) 
Ln_Response time  0.20  3.92**  0.04 
  (0.22)  (1.24)  (0.30) 
Constant -1.04*** -0.18 -0.09 -9.30* -1.43*** -1.24 
 (0.19) (0.85) (0.34) (3.75) (0.25) (1.04) 
Observations  167   167    40    40    127   127 
r2  11.77   23.51   0.89   19.98   10.09   21.62 

  Standard errors in parentheses + p<0.10, *p<0.05, **p<0.01 
  Robust standard errors used 
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The results for CRT High (2,3) are considerably different from CRT Low (0,1). Both Defect 

Undetectable and Root Cause Understanding become positive predictors of recall likelihood in the 

CRT High (2,3) category (Table 3.9, column 5), however Defect Undetectable is only marginally 

significant, similar to the t-test results in Table 3.8. These results hold after including all 

dispositional control variables, and none of those variables are significant for CRT High (2,3) 

(Table 3.9, column 6).  

In sum, by repeating our analyses in a split sample based on low and high CRT scores, we 

find that the two important situational factors in the full sample (Defect Undetectable and Root 

Cause Understanding) are only significant for subjects who scored high on the CRT. Low CRT 

subjects are not influenced in the recall decision by any of the situational factors. However, 

dispositional control variables, which were not significant in the full sample or in the high CRT 

category, are all significant predictors of the likelihood to recall in the low CRT category. We 

discuss these results and their implications in Section 3.8. 

3.8 Discussion and Implications 

This study has revealed several key findings that can be used by managers and regulators 

to improve the recall decision-making process. First, concern voiced by a single influential 

physician appears to have no significant impact on the likelihood to recall. This finding is 

contradictory to previous behavioral research which identifies the influence of salient, outspoken 

customer feedback on managerial decisions. Perhaps the nature of this marketplace, where the 

purchasing customer is separate from the customer who is most intimately affected by product 

quality, explains the departure from past research. Senior managers at the company where our 

subject pool was drawn were pleased with this result, since they believe recall decisions should be 

based on objective data and not influenced by any single, albeit important, customer.  

Second, the likelihood of a recall appears to be significantly impacted by the technical 

characteristics of the potential defect, in particular whether the defect could be detected by the 

physician customer (and thus corrected) before use. When a potential defect is undetectable, 

managers are more likely to recall, perhaps in an effort to safeguard patient safety. Interestingly, 

this implies that the opposite is also true. When managers know that a potential defect would be 
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detectable by the physician customers pre-use, they are more likely to avoid recalling the product, 

presumably because they trust physicians to serve as a final quality screen to safeguard patient 

customers. Results of the physician concern and defect detectability factor indicate a general 

preference by managers to focus more on the patient customer’s safety and less on the physician 

customer’s opinion.  

Third, the likelihood of a recall also is impacted by information surrounding the cause of a 

potential defect. When managers better understand the root cause of product failures, they are more 

likely to make a recall decision, indicating the relevance of attribution theory in the product recall 

decision. This result may explain popular media covered recalls in which companies failed to recall 

products, possibly because they did not understand root cause. 

Finally, independent of these three situational factors, we also find that an individual 

manager’s cognitive reflection level also contributes to the propensity to recall. Specifically, 

subjects with high cognitive reflection levels (i.e., high CRT scores) are less likely to recall 

compared to those with low cognitive reflection. This dispositional factor is more significant in p-

value and effect size than any other factor. Post-hoc analyses further reveals that low CRT managers 

are not influenced by any of the situational factors. This outcome appears consistent with theory 

supporting the CRT (Frederick, 2005). Low CRT individuals are thought to make decisions based 

more on “gut” instinct, emotions and relationships and less upon data. Low CRT subjects in our 

setting were influenced by the dispositional control variables, such as their experience and their 

perceived relationship with the FDA. Defect detectability and root cause, which are both positive 

predictors of recall likelihood in the full analysis, only influence high CRT managers. High CRT 

individuals are thought to make decisions based more on analysis and reflection. Because of this, 

the root cause of the defect and the related elimination of randomness as a cause of the product 

failures matters most for this group. 

 

Implications 
Several implications for managers and regulators emerge from these findings. First, our 

results reveal that managers may implicitly be factoring in the possibility of using physicians as a 

final quality control step when making a recall decision. Senior managers from our partner 

company saw this as a problem that they will need to guard against through training. They felt 
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strongly that the decision to recall should be based on an assessment of quality of products at the 

time they are handed off to physician customers, rather than the predicted quality of products after 

intermediary steps that the company does not control. Relying on physicians as a final quality 

screen for defective products is something that both our partner company and the FDA deem 

undesirable.  

Second, managers should be wary of waiting too long for additional failure analysis or root 

cause data before recalling. This tendency is observed in both the Root Cause Understanding factor 

and the CRT factor results. In both cases, managers demonstrated a propensity to wait for more 

data instead of taking action. Determining true root cause of a complex medical device failure is 

not a simple task. Through our interviews with our partner company, we learned that it could take 

months to conclusively know the cause of a failure. The FDA, in response to our findings, 

emphasized that root cause does not need to be determined before initiating a recall and should not 

necessarily serve as recall decision criteria. Managers should consider recalling products when they 

observe a significant increase in failure rates, even in the absence of understanding root cause. Our 

partner company is using this finding to calibrate their recall decision-making process, and ensure 

that recall decisions are made in a timely manner, not necessarily contingent upon root cause 

understanding. 

A final managerial implication relates to a managers’ cognitive reflection levels. Those 

managers who are more intuitive in their decision-making practices (low CRT), need to ensure they 

look beyond their individual predispositions and fully account for situational characteristics related 

to the product failure when making recall decisions, guarding against making “knee-jerk” reaction 

recall decisions. Managers with high CRT need to ensure they act decisively in a timely manner, 

and do not unnecessarily postpone the recall decision, failing victim to “analysis paralysis.” 

Companies can use these results to expand recall decision-makers’ understanding of the effect that 

their level of cognitive reflection or personal predispositions have upon deciding to recall, making 

the recall decision more objective. Managers with low CRT scores also exhibited a correlation 

between their perceived relationship with the FDA and likelihood to recall, which was viewed as a 

potential concern in our interviews with the FDA. FDA has recently invested in efforts to reduce 

combativeness and increase the sense of collaboration with companies. However, our results 

suggest that this improved relationship could lead to a lower likelihood of recall for managers with 
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low CRT scores. This highlights the FDA’s need to strike a careful balance in their relationships 

with manufacturers. Relationships between regulators and companies perhaps require a certain 

amount of healthy animosity to reduce unwanted effects of familiarity. 
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Chapter 4:  
 
Slow or Fast? An Empirical Examination of the 
Recall Responsiveness Dilemma 
 

4.1 Introduction 

"General Motors doesn't know why it took 10 years to issue a recall." 25 
 - Mary Barra, CEO of General Motors. 4/1/14. Testimony before U.S. Congress 

 
Executives at General Motors deliberated for years before deciding to recall millions of 

automobiles with faulty ignition switches. Although moving quicker in this case may have saved 

customer lives, a firm’s sluggish response to obvious quality problems and a delay in recalling 

products is neither an isolated nor novel event. Delays in recalling products occur frequently and 

regularly, and across many industry sectors as diverse as food, medical device, automotive, and 

pharmaceuticals. In the United States, most of these industries are highly regulated and rigorously 

monitored by various government agencies such as Consumer Products Safety Commission 

(CPSC), National Highway Traffic and Safety Administration (NHTSA), and the Food and Drug 

Administration (FDA). Although regulatory agencies maintain strict oversight, advocate fast, 

timely response to quality problems as they emerge, and penalize offenders, firm responsiveness in 

the recall process appears to be inefficient and suboptimal as illustrated by many recent recall 

examples in the popular media. In 2005, Guidant Corporation, a manufacturer of implantable 

cardiac devices, was criticized by the Senate, federal regulators and the media for a slow recall 

response after receiving pressure from key physician customers to recall a certain product and after 

at least one patient death.26 A recent Government Accountability Office report further corroborates 

the slow responsiveness by firms when recalling defective products.27 A separate report has also 

indicated that regulators, like the FDA, can be slow in responding to product quality problems.28 

The implicit rationale underlying this line of argument is that faster responsiveness in 

                                                        
25 http://money.cnn.com/2014/04/01/news/companies/barra-congress-testimony/ 
26 http://www.nytimes.com/2005/05/24/business/24heart.html?pagewanted=all&_r=0 
27 http://www.gao.gov/products/GAO-05-51 
28 http://www.gastroendonews.com/  

http://www.gastroendonews.com/
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identifying and addressing quality problems by firms and regulators will result in better outcomes 

for all stakeholders. Not surprisingly, customers, manufacturers, and regulatory agencies 

continually advocate for speed in recalling products from the market, even though the relationship 

between responsiveness and future recalls has not been empirically proven. Furthermore, it is not 

clear whether firms and regulators respond to certain types of recalls with faster or slower speed. 

That is, we do not know if there is a discernable pattern in firm and regulator responsiveness to 

recalls.  

In this paper, we address these research gaps by studying two related questions: 1) What 

leads to quick recall response times for firms and regulators, and 2) how does such responsiveness 

impact future recall rates? We study our questions by deconstructing the recall process into its 

constituent phases and using data compiled in collaboration with the FDA. For this study, we 

worked with the FDA because in the United States, it has regulatory authority over food, 

pharmaceutical, medical device, and cosmetic recalls; products which account for approximately 

$1.6 trillion of annual consumer spending.29 Figure 4.1 shows the four most critical steps in the 

recall process. These steps are very well-specified and clearly laid out, but the FDA does not 

formally mandate how much time should be spent on any individual step. Intuitively, taking a long 

time between any two steps seems undesirable, yet anecdotal evidence suggests that there is 

considerable variation in the time taken to execute the recall process. Previous researchers have 

paid little attention to the underlying causes of variability in recall responsiveness and its 

subsequent impact on future recalls. A notable exception includes Hora et al. (2011), who showed 

that firm’s recall strategy, defect type, and supply chain player initiating the recall, each has an 

impact on time-to-recall in the U.S. toy industry. Our study builds on Hora et al. (2011) but uses a 

finer measure of responsiveness by decomposing time-to-recall into its three separate constituent 

intervals using unique time-stamped data. We obtained the actual time and date stamps 

corresponding to the four steps for every medical device recall that occurred in the US between 

2003 and 2013 from the FDA. We then computed the three different intervals representing the recall 

process. These are time-to-open, time-to-classify, and time-to-close a recall (Figure 4.1). 

 

                                                        
29 http://www.bls.gov/news.release/cesan.nr0.htm 
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Figure 4.1 Simplified Recall Process and Critical Steps 

 
 

 

 

 

 

 

 

 

 

It is important to divide time-to-recall into three separate time intervals instead of using a 

composite measure, because first, different entities are responsible for enacting them, and second, 

each of them exposes the decision maker to a different set of risks and uncertainties. Specifically, 

whereas a firm is responsible for opening and closing a recall, the FDA is responsible for 

categorizing the recall into distinct classes to indicate the potential severity of the problem. Further, 

the decision to open a recall compared to the decision to close one entails a different set of risks 

and uncertainties for the decision maker and for the firm. Arguably, the same predictor could have 

a dissimilar impact on the decision to open and close recalls. Thus, discriminating between the 

three time intervals allows us to estimate examined relationships more accurately. In this paper, we 

identify recall severity as a predictor of firm and FDA responsiveness because it a key characteristic 

differentiating recalls. Some recalls are very serious, demonstrating a risk to life if the products are 

not quickly recalled from the marketplace. Other recalls are more administrative, intended to 

correct an obscure labeling mistake that may not have ever been noticed by customers. It is likely 

that such diverse types of recalls lead to different responses from firms and from regulators. We 

draw upon prospect theory in economics (Kahneman and Tversky, 1979) to ground our 

relationships between severity and its impact on firm responsiveness, measured as the three time 

intervals. We then explore how responsiveness at the firm and the FDA effects future product recalls. 

We answer our questions using a unique dataset spanning 11 years and over 4000 product recalls, 

and rigorous econometric methods.  

3. Recall classify 
date (FDA) 

1. Defect awareness 
date (firm)  

2. Recall open date 
(firm) 

4. Recall close date 
(firm) 

Time-to-Open  Time-to-Classify 

Time-to-Close  



  
 

81 
 
 
 

Our results make three important contributions which have the potential to inform current 

literature and impact managerial and regulatory practices related to product recalls. First, we find 

that the severity of a recall is associated with opening and closing recalls but not always in the 

hypothesized direction. Specifically, consistent with our hypothesis, firms take significantly more 

time-to-open more severe recalls compared to less severe recalls. Firms take 10 additional days to 

open high and moderately severe recalls compared to the least severe recalls, a 20% increase in 

time-to-recall. Unfortunately, the most severe recalls are those that put the public at the highest risk 

and which require the fastest response times from the firm. Contrary to our hypothesis, firms also 

take the longest time-to-close the most severe recalls. High severity recalls take an extra 76 days 

(23% increase), and moderately severe recalls an additional 250 days (72% increase) to close in 

comparison to the least severe recalls. We also find that consistent with federal guidelines and FDA 

policy objectives, the FDA classifies the most severe recalls the fastest.  

Related to future recalls, our results show that closing recalls slowly reduces future recalls. 

A one standard deviation change in the time-to-close a recall (298 days or 10 months) leads to two 

fewer recalls per plant across the time of the panel, while half a standard deviation change (140 

days or 4.5 months) leads to one less recall per plant. Surprisingly, the time-to-open a recall has no 

effect on future recalls. Apparently, while moving quickly to open a recall has significant customer 

upside (by quickly removing risky product from the marketplace), it has negligible firm downside 

(no apparent lost learning). We also find that FDA’s responsiveness in classifying recalls reduces 

future recalls, but this effect is statistically significant only for the least severe recalls. As a set, our 

results suggest that the relationship between responsiveness and future recalls is nuanced and varies 

with recall severity. These results while counterintuitive have critical implications – conventional 

wisdom and economic theory suggests that firms should open and close more severe recalls faster, 

and such faster responsiveness should reduce future recalls. However, our results indicate that in 

reality, the opposite is true: higher severity slows firm responsiveness, and slower responsiveness 

leads to fewer future recalls. 

 

4.2 Theory and Hypotheses 
In this research, we examine predictors of recall responsiveness and investigate whether fast 

responsiveness reduces future recalls. Our research is informed by three distinct but related streams 
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of literature. Because recalls are a type of external failure cost, we review the product quality 

literature broadly to provide foundation and motivation to our research questions. From a 

managerial perspective, the decision to recall a product is inherently risky and fraught with 

uncertainty and unpredictability. We review literature related to prospect theory to understand how 

riskiness and uncertainty impact recall responsiveness. Previous researchers have also suggested 

that the level of employee discretion in task completion may impact the quality-speed tradeoff 

(Hopp et al., 2007). Therefore, we examine the literature salient to discretionary tasks in developing 

the relationship between responsiveness and future recalls. 

 
Product Quality and Recalls 

Product recalls occur when systemic product defects, due to flawed design or poor 

manufacturing, are not detected until the product is in the marketplace. In the quality literature, 

such quality failures are examples of external failure costs for the firm (Juran, 1999). Although 

quality literature is too vast to cover here, we can glean three overarching themes from reviewing 

the relevant literature. First, we find that a majority of empirical literature related to failure costs 

focuses on internal quality performance (Banker et al., 1990; Datar et al., 1993; Mukherjee et al., 

2000) and qualitative measures of external quality performance (White et al., 1999; Fynes and Voss, 

2001; Ahire and Dreyfus, 2000). Second, our review also found studies that have examined external 

failures generally, and product recalls specifically (Thirumalai and Sinha, 2011; Jarrell and 

Peltzman, 1985; Chen et al., 2009). A majority of these treat “product recall” as an independent 

variable predicting various measures of firm performance. Finally, there are only a handful of 

studies that have examined organizational and operational causes of product recalls using secondary 

data and rigorous research methods (Haunschild and Rhee, 2004; Thirumalai and Sinha, 2011; Shah 

et al., 2014). The paucity of research with external quality failures as the dependent variable 

suggests a research gap and a potential to make an important contribution to product failure 

literature. The rest of our review focuses on research related to product recalls.  

 Recently, researchers have begun to explore plant and firm level causes of recalls in order to 

reduce and prevent future recalls. For instance, Thirumalai and Sinha (2011) find that firms with 

broad product lines are more susceptible to a recall compared to firms with narrow product lines. 

Using automotive recall data, Haunschild and Rhee (2004) show that recalls initiated by the 
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automaker leads to fewer future recalls, than recalls mandated by regulators. The authors 

underscore the importance of learning in recall prevention, and reason that a firm’s voluntary 

initiation of recall is associated with deeper reflection and learning. The most closely related to our 

study is Hora et al., (2011), who examine product and strategy drivers of a manufacturer’s time-to-

recall. Using data from the toy industry, the authors demonstrate that managers take more time-to-

recall design related defects than manufacturing defects. Additionally, the authors find that firms 

which adopt preventive recall strategies take longer to recall compared to firms espousing more 

reactive strategies. Hora et al. (2011) measure time-to-recall as the time interval between recall date 

and product launch date. However, by not measuring the time-to-recall from the time when the firm 

first became aware of the defect, their measure represents a much longer duration. It is quite 

conceivable that the product may have been launched many months if not years before the defect 

was actually observed. Even so, this seminal study constitutes an important first step towards 

furthering our understanding of recall responsiveness. We build upon quality and recall literature 

by developing a more precise measure of recall responsiveness using actual time stamps 

characterizing the four phases of the recall process. Using these more rigorous measures, we 

substantiate conclusions from past research and uncover new relationships.  

 
Risk, Uncertainty, and Responsiveness 

In developing our hypotheses, we draw upon prospect theory (Kahneman and Tversky, 

1979), which is foundational to studying decision making under risk and uncertainty. One of the 

most pertinent characteristics of prospect theory is that it distinguishes between risk-averse and 

risk-seeking behavior of decision-makers facing uncertainty. In their seminal study, Tversky and 

Kahneman (1981) demonstrated that when a problem with uncertainty is posed in terms of a gain, 

decision makers tend to be risk-averse and when the same problem is posed in terms of a loss, risk-

seeking behavior is observed. They conclude that when facing an uncertain situation, decision-

makers are risk-averse in gains and risk-seeking in losses. This behavior has been substantiated in 

multiple other studies (Bateman and Zeithaml, 1989; Fishburn and Kochenberger, 1979; Devers et 

al., 2007; Shefrin and Statman, 1985; Ferris et al., 1988).  

From a managerial perspective, opening a recall is associated with incurring a “sure loss” 

today and the decision to open a recall is accompanied with inherent risk and uncertainty. The losses 
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are immediate and occur the instant a decision to open a recall is made, although they vary greatly 

in magnitude, depending upon the severity of the recall. Losses come in many forms including 

negative publicity generated by the recall, and its subsequent negative impact on the firm’s 

reputation. It is not unusual for the FDA to suspend new product approvals for firms with recalls, 

until all existing recalls are brought under control.30 Thus, recalls significantly affect a firm’s future 

revenue and result in an immediate increase in costs impacting a firm’s current profits. Generally 

Accepted Accounting Practices (GAAP) requires firms to report any known and sure future costs 

in the form of accruals. When a manufacturer decides to recall a product, the costs to repair or 

replace the affected products have to be estimated, and instead of absorbing recall costs slowly as 

they occur over time, manufacturers are required to accrue them immediately in their financial 

statements which negatively impacts earnings in the current time period.  

At an individual level, recalls can have serious negative repercussions on a manager’s 

career. Individuals involved in decision-making associated with defective products can be blamed 

and held responsible for the product failure, contributing to a real and perceived reduction in job 

security. Losses vary greatly across different recalls and increase significantly with the severity of 

the recall. The more serious the potential product failure and related recall, the more serious the 

consequences may be on the firm and the individual manager’s career who is responsible for 

making the recall decision. Postponing the decision to open a recall to a later date may delay the 

loss or reduce the probability of incurring the loss to less than 100 percent. In other words, 

postponing the decision does not just delay the recall, it may obviate the need for a recall, if product 

failures abate or attention to the issue wanes. However, the delay is also likely to increase the 

magnitude of the loss as the impacted units are likely to increase in number and affect more 

customers over time. In sum, the decision to open a recall requires managers to choose between a 

sure loss of a known magnitude today versus a less than sure loss of an uncertain higher magnitude 

at a future date. As recall severity increases, the associated uncertainty and risk also rises, resulting 

in an increased chance of delaying the decision to open the most serious recalls. 

 
Hypothesis 1A: Severity of a recall is negatively associated with time-to-open. Specifically, 
more serious recalls have longer time-to-open.   

 
                                                        
30 http://online.wsj.com/news/articles/SB10001424052748703909804575123441387311792 
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In contrast, closing an open recall quickly is desirable as firms can use this to indicate in-

control quality processes to customers, stock holders, and regulators. The longer a recall remains 

open, the greater unwanted exposure and negative publicity the firm receives from media. It may 

also face more intense regulatory pressure and greater potential loss of customers and market share. 

Generally, recalls which remain open longer have higher overall costs associated with them, and 

the costs increase with the severity of the problem. The higher the severity of the recall, the higher 

the tangible and intangible costs. These costs are likely to increase proportionally with the time that 

the recall remains open. Thus, in an effort to reduce the riskiest and more certain loss, decision 

makers are likely to close the most serious recalls fastest, demonstrating risk-seeking behavior in 

their decision to close a recall. It is possible that closing recalls too quickly has disadvantages 

because a premature closure may hinder managers from developing a comprehensive understanding 

of the defect leading to future recalls. However, the risk of losing potential learning associated with 

closing a recall too soon is less tangible and less objective than the risk of negative publicity and 

exposure accompanying an open recall. It is reasonable to expect managers would lean towards 

closing recalls quickly especially the more serious recalls because these are riskier and more costly.  

 
Hypothesis 1B: Severity of a recall is positively associated with time-to-close. Specifically, 
more serious recalls have shorter time-to-close.   

 
Hypotheses 1A and 1B are also supported by the rationale guiding a manager in a profit-

maximizing firm, who should behave in a manner which enhances profits most assuredly. In 

deciding to open or close a recall, the profit-maximizing firm should open recalls slowly and close 

recalls quickly. The longer the firm waits to open the recall, the more positive effect on profits. 

Similarly, the faster it can close the recall, the better it is for firm’s bottom line. This relationship 

should be further accentuated by the severity of the recall: the most serious recalls should be opened 

slowest and closed quickest.  

Regulators such as the FDA may however be motivated to act in an opposite manner as the 

firm. The FDA is tasked with regulating the medical device industry and protecting the public from 

harmful devices. One of the responsibilities of the FDA is to classify product recalls after they are 

initiated by the firm. The FDA classifies the recalls according to the risk posed to the public with 

the objective of classifying the most severe recalls the fastest. In accomplishing this goal, the FDA 
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quickly alerts physicians, customers, and manufacturers, as to the seriousness of an issue. In this 

and in other roles, the FDA acts as an agent of the principle, which is in this instance is the taxpaying 

US consumer. The consumer is unable to properly monitor and track medical device product 

performance and risk, so the FDA performs that work on behalf of the taxpayer. Agency theory 

(Jensen and Meckling, 1976) informs us that if the FDA is fulfilling this responsibility in the best 

interests of the principle taxpayer, they should classify the most serious recalls the fastest to ensure 

that the consumer is alerted to this danger and can alter their behavior accordingly. We therefore 

hypothesize: 

 
Hypothesis 1C: Severity of a recall is positively associated with FDA’s time-to-classify. 
Specifically, more serious recalls have shorter time-to-classify. 

 
Responsiveness and Future Performance 

In the process of opening a recall, quality and reliability engineers systematically sift through 

failure data to identify underlying patterns and similarities. Likewise, to close a recall, engineering 

personnel perform numerous tests and analyses to uncover the root cause of the problems. Although 

the decision to open or close a recall is based on rigorous data analysis and well-specified guidelines, 

it entails a considerable amount of educated guesswork and subjective assessment. That is, opening 

or closing a recall do not have well-established, concrete completion criteria, providing 

considerable flexibility to decision makers in determining when and how to end the tasks. Such 

discretionary tasks are common to many professions and frequently require knowledge workers to 

assess and determine when and how tasks are completed. This is in contrast to most assembly line 

tasks which have definite completion criteria and a strict end-point, leaving employees little 

discretion in deviating from them. Hopp et al., (2007) suggest that discretionary task completion 

allows workers to manage their workload by adjusting the quality of the output. They conclude that 

professional workers in discretionary jobs may consciously use quality as a lever to balance 

increased work-load. That is, in the absence of strict completion criteria, workers may choose to 

terminate their work prematurely and alter quality in order to balance an increased work load. 

This trade-off between quality and speed of work in professional tasks, characterized as the 

quality-speed conundrum (Anand et al., 2011) has been empirically demonstrated in multiple 

settings (Tan and Netessine, 2014; Oliva and Sterman, 2001; Powell et al., 2012; Kunz et al., 2014; 
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Gans et al., 2003). Using panel data in a restaurant setting, Tan and Netessine (2014) find that as 

server workload and processing speed increases, quality measured as server sales efforts decreases 

– that is, the server consciously chooses to spend less time upselling pricier menu items. Powell et 

al. (2012) find similar relationships in a hospital setting. They show that as the physician work-load 

increases, the quality of their administrative work decreases significantly. This quality-speed 

relationship has also been demonstrated in other healthcare (Kuntz et al., 2014) and banking 

industry (Oliva and Sterman 2011) studies. 

Faster responsiveness to open or close a recall may prevent a more thorough understanding 

of the product quality problem. When a firm moves too fast to open a recall, they may hinder 

comprehensive defect understanding by limiting the number and types of failure modes exhibited 

in the marketplace.  Moving too fast to close a recall may prevent accurate identification of root 

cause of the defect. In either case, a limited understanding of the defect and its cause may exist. 

This limitation can hamper learning and reflection resulting from the recall. Past research has 

demonstrated the importance of such recall learning as a mechanism to reduce future recalls 

(Haunschild and Rhee, 2004). 

 
Hypothesis 2A: Time-to-open is negatively associated with future recalls, such that plants with 
shorter time-to-open will have more future recalls. 
 
Hypothesis 2B: Time-to-close is negatively associated with future recalls, such that plants with 
shorter time-to-close will have more future recalls. 
 
FDA’s responsiveness in classifying recalls may also have an effect on learning and future 

recalls. The purpose of the FDA classification is to alert the general public, physicians, and 

manufacturers regarding the severity of the recall. If a firm believes that a recall is not severe, and 

FDA classifies the recall similarly, the firm’s perceptions are confirmed. If the FDA classifies 

differently from the firm’s beliefs, the firm’s perceptions are calibrated closer to regulator’s 

perceptions. Conceivably, the sooner this classification occurs, the more likely that this calibration 

will resonate within the organization and lead to learning and product quality improvements. When 

the classification process is far removed from the time that the firm initiated the recall, the impact 

of this calibration is likely reduced. It is therefore possible that FDA classification speed may be 

associated with future recalls. 
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Hypothesis 2C: Time-to-classify is negatively associated with future recalls, such that when the 
FDA takes more time to classify a recall, plants will have more future recalls. 

4.3 Research Setting, Data, and Empirical Strategy 

We examine our research questions in the US-based medical device industry for two reasons. 

First, firms in the medical device industry represent a substantial proportion of the U.S. economy, 

and are diverse in size and geographic spread. By some estimates, the medical device industry is 

expected to exceed $130 billion in market size and 6000 firms in number by 2016.31 Second, recalls 

happen regularly with great frequency, are often life-threatening to consumers, and occur because 

defects in increasingly complex products may go undetected after production. Thus, identifying 

factors that can result in reducing recalls in this industry is of critical importance to researchers, 

regulators, and managers on one hand, and to the overall economy on the other hand. 

FDA defines a medical device recall as a “firm’s removal or correction of a marketed product 

that FDA considers to be in violation of the laws it administers”. Although FDA can mandate and 

force a manufacturer to recall a product from the market, a majority of recalls are voluntary in 

nature where a manufacturer (or a distributor) may initiate a recall on their own volition “to protect 

public-health and well-being from products that present a risk of injury or gross deception or are 

otherwise defective.” 32  Because the medical device industry is highly regulated and closely 

monitored, the recall process is well-specified, and consists of multiple steps. A simplified 

representation of the recall process highlighting the most important steps shows that a recall process 

begins when a manufacturer decides to recall a defective product from the market (Figure 4.1).  

To initiate a recall, the manufacturer is required to notify the FDA of their decision to recall 

the product, and also identify the date when they first became aware of the defect. This is labeled 

the “defect awareness date” in the official record. The manufacturer is required to contact all the 

customers and the FDA to notify them of the defect, and any possible corrective action. This 

initiates the actual recall, and is referred to as the “recall open date”. FDA examines the defect 

notification details and classifies the recall into one of the three classes based on the severity of the 

                                                        
31 http://selectusa.commerce.gov/industry-snapshots/medical-device-industry-united-states 
32 http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/RecallsCorrectionsAndRemovals/ 
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defect and the potential harm to the consumer. The date associated with this step is called the “recall 

classify date.” The classification signals FDA’s perception of the seriousness of the defect to both 

the manufacturers and the customers. It also conveys the associated level of urgency required of 

the manufacturers in their response to customers. The final step in the recall process is for a 

manufacturer to close an open recall, and the corresponding date is called the “recall close date”. 

Recalls can be closed when the manufacturer has identified root cause and corrective action of the 

problem, repaired or replaced all the affected units, and communicated this information to the 

FDA.33  

The three classes of medical device recalls are labeled class I, II and III in a decreasing order 

of severity and potential harm to the customer. The FDA describes a class I recall as “a situation in 

which there is a reasonable probability that the use or exposure to an adverse product will cause 

serious health consequences or death.”34 A class II recall is one in which use of the product may 

lead to reversible or temporary customer harm, whereas a class III recall is defined as one in which 

such dire consequences are highly unlikely. An example of class I recall is correcting an electrical 

malfunction in a critical component of an implantable defibrillator whereas correcting a product 

labeling error, and a defective tongue depressor or examination gloves are examples of class II and 

III recalls respectively. Our data includes all three classes of recalls voluntarily initiated by the 

manufacturers. While the FDA maintains the ability to mandate a recall, it is very rare for them to 

do so, and they did not mandate any of the recalls in this data set. 

Data for this study were obtained from the FDA in 2014 through a Freedom of Information 

Act (FOIA) request and covers recalls from 2003 to 2013. The beginning date for our sample is 

2003 because data for recall records are not available prior to 2003; the ending date is 2013 as it 

was the last year for which complete recall data were available. To examine our research questions, 

we conduct the analysis at two different units of analyses. In our first research question, we seek to 

understand the relationship between recall severity and our measures of responsiveness, time-to-

open, time-to-close, and time-to-classify. Hypotheses 1A-C, corresponding to research question 

one, examine causes of recall responsiveness and require a “recall” level unit of analysis. In the 

second research question and the corresponding Hypotheses 2A-C, we seek to understand the effect 

                                                        
33 http://www.fda.gov/downloads/iceci/compliancemanuals/regulatoryProceduresManual/UCM074312.pdf 
34 http://www.fda.gov/safety/recalls/ucm165546.htm 
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of past recall responsiveness on future recalls, which requires a higher unit of analysis. To predict 

future recall occurrences, the analysis must be conducted at the level at which recalls occur, which 

is the manufacturing plant in the FDA data. To examine the second research question, we measure 

recall responsiveness and future recall counts at the plant in which the products are manufactured. 

Our data consists of 358 unique medical device manufacturing plants and 4,394 recalls across the 

three recall classes. The research design for research questions one and two are summarized in 

Table 4.1. 

 

Table 4.1 Research Design by Research Question 

 
 Research Question One Research Question Two 
Research Question What effects recall responsiveness? How does recall responsiveness  

effect future recalls? 
Hypotheses 1A, 1B, 1C 2A, 2B, 2C 
Unit-of-analysis Recall Plant-Year 
Dependent variables Time-To-Open,Time-To-Close, Time-

To-Classify 
Future Recalls at the Plant 

Independent 
variables 

Recall Severity Ln_Process Time 

Control variables Sales Salesa 
 Public Public 
 Year  Year 
 Ln_Units_Recalled Lagged class I, II, III recalls 
 Recall Root Cause Ln_Average Units Per Recall 

  a Note: Sales and public are only used in robustness checks for RQ two, as FE analyses de-mean time-invariant unobservables  
  and exclude sales and public. 

 

 

DEPENDENT VARIABLES 
Recall Responsiveness. Time-To-Open, Time-To-Close, and Time-To-Classify are the dependent 

variables for research question one. Time-To-Open is the number of days between the defect 

awareness date and recall open date. Time-To-Close is the number of days between the recall open 

and close dates. Time-To-Classify is the number of days between recall open and FDA classification 

dates. Time-To-Open and Time-To-Close are controlled and managed by the plant while Time-To-

Classify is regulated by the FDA. Figures 4.2-4.3 demonstrate the trend in recall responsiveness for 

both the plant and the FDA in the data. While plant response times to open and close a recall 

increased steadily from 2003 to 2011, both demonstrate a recent decreasing trend in 2012 (Figure 
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3). The time-to-open a recall seems to be faster than the time-to-close, and is less variable, 

particularly in the most recent years. FDA response time remained consistent from 2003 to 2011, 

but increased both in variation and in total time in 2012 and 2013 (Figure 4.3).  

 

Figure 4.2 Plant Recall Response Times 

 
 
 
Figure 4.3 FDA Recall Response Time 
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Future Recalls. The dependent variable for research question two is the count of product recalls 

initiated on products built in each plant for every year of the panel. Because we seek to understand 

the relationship between recall responsiveness and subsequent recalls, this count of recalls is a lead 

measure, measured in the year following the year of measurement of the independent variables. 

The number of recalls in this industry have been increasing steadily over the past 10 years, with 

class II recalls accounting for a majority of this growth (Figure 4.4).  

 
Figure 4.4 Recalls by Year and Class 

 
 
 
INDEPENDENT VARIABLES 
Recall Severity. The independent variable for research question one is recall severity. The FDA 

classifies recalls into three classes ranging from least severe (class III-low severity) to most severe 

(class I=high severity) with a moderate recall class (class II=moderate severity) in between. For 

this measure, indicator variables for High Severity and Moderate Severity are used with Low 

Severity as the reference category. 

Process Time. For research question two, the independent variables are the average time a plant 

takes to open and close a recall and the time the FDA takes to classify a recall in a given year. 

Ln_Process Time for the time-to-open analysis is the natural log of the time between the defect 
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awareness date and the recall open date. Ln_Process Time for the time-to-close the analysis is the 

natural log of the time between the recall open and close dates. Ln_Process Time for the time-to-

classify the analysis is the natural log of the time between recall open date and FDA classification 

date. These variables are logged after averaging these times for all recalls that were opened and 

closed throughout the year.  

 
CONTROL VARIABLES 
Sales: Sales is highly correlated with plant size and is frequently used as a measure of resources 

available to plants including resources dedicated to quality control and thereby its ability to 

influence recall responsiveness. Larger sales may also imply future recalls as more products in the 

market may mean more opportunities for failure. FDA collects annual plant sales in ten separate 

categories, in regular increments beginning with $0-$25,000 and ending with $50,000,000 and 

higher. We acquired plant sales data from the FDA and recoded the data from one to ten 

corresponding to each category provided by the FDA. We use this measure (Sales) to control for 

the effect of plant size and resource availability. The mean sales were 8.52, corresponding to $18 

million in annual plant sales. 

Public.  Publically traded plants may be under pressure to deliver more risky innovation more 

quickly and may be associated with a higher risk of a recall. An indicator variable is used to identify 

whether the plant is part of a public or private plant (Public). 

Units Recalled. Plants are required to inform the FDA of the number of units associated with the 

product recall when the recall is opened. Due to the negative signals sent to customers and 

regulators by a large recall, plants may be less responsive in opening a recall as the number of 

defective units increases. The time-to-close a recall could be impacted by the size as well. The more 

units affected, the more units requiring repair which may lead to longer close times. The FDA may 

also classify recalls differently depending upon the number of units affected. To control for these 

effects, we measure the natural log of the units affected by each recall (Ln_Units_Recalled) as a 

control variable for research question one. For research question two, we average the units affected 

by all recalls at the plant in the current year to control for the impact on future recalls (Ln_Avg 

Units Per Recall).  

Year. FDA policies may change over time and this might impact plant and regulator recall 
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responsiveness and impact the total number of recalls that occur. We use an indicator variable for 

the year that the recall was initiated to control for year effects and treat 2013 as the reference 

category. 

Recall Root Cause. The root cause of the recall may affect recall responsiveness. For example, 

Hora et al. (2011) found that design related toy recalls led to slower time-to-recall than 

manufacturing recalls because of the heightened complexity associated with design problems. To 

control for the effect that root cause may have upon responsiveness, we utilized root cause 

categories assigned by the FDA. In the raw FDA data, there were 42 categories, though many of 

them had very few occurrence rates and were quite similar to each other in description. To 

streamline this measure, we classified similar categories together into four distinct groups 

(Manufacturing, Software, Design, and Miscellaneous). We used indicator variables for each 

category and treated Design as the reference category for research question one. 
Lagged Recalls. To control for the affect that past recall tendencies may have upon future recalls, 

we counted the number of recalls in the current year and grouped them by recall classification 

(Lagged Class I Recalls, Lagged Class II Recalls, Lagged Class III Recalls). 

 
Empirical Strategy 

Research question one uses time-to -open, -close and -classify as three separate dependent 

variables. When analyzing the effects of covariates on time to an event, hazard models are 

commonly used (Box-Steffensmeier and Jones, 2007). The Cox Proportional Hazard (CPH) model 

is widely used because it is flexible and does not require researchers to specify the underlying 

hazard rate. However, an important assumption of the CPH is that the hazard rates (the effects of 

covariates on failure time) do not change across time, and when this proportionality assumption is 

violated, coefficients from the CPH model can become biased. To test for the appropriateness of 

CPH model to our data, we tested for the constancy of hazard rates over time by examining the 

statistical significance of Schoenfeld residuals (if residuals are significant, proportionality does not 

hold) (Box-Steffensmeier and Jones, 2007). Schoenfeld residuals were calculated for time-to -open, 

-close, and -classify for our independent variables of interest in research question one (recall 

severity). Moderate Severity for time-to-close, and High and Moderate Severity for time-to-classify 

demonstrated a lack of proportionality. All hazards are however proportional for time-to-open.  
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There are three ways to compensate for non-proportional hazards: 1) stratify the data based 

on specific groups which cause the non-proportionality, 2) include time interaction variables in the 

analysis, and 3) use a non-proportional accelerated failure time (AFT) model. As there are no clear 

strata for our data, we do not compensate using stratification. Instead, we include time interaction 

variables in the CPH analysis as necessary (Moderate Severity for time-to-close and High and 

Moderate Severity for time-to-classify). Our primary hazard model is a recurrent event CPH that 

accounts for shared variance that may occur when the same plant experiences multiple recalls per 

year (Box-Steffensmeier and Jones, 2007). We also include non-proportional AFT models in the 

analysis as additional verifications that our results hold, independent of the model and distribution 

chosen. Commonly used non-proportional AFT models are Weibull, exponential, log-normal and 

log-logistic (Qi, 2008; Box-Steffensmeier and Jones, 2007). For completeness, these four models 

are included in the hazard analysis and compared to the CPH results. It is important to note that 

positive beta coefficients in CPH models signify a reduced time to failure and should be interpreted 

as an increased hazard while positive beta coefficients in AFT models signify an increased time to 

failure and should be interpreted as a reduced hazard. 

Research question two uses future recall counts at the plant as the dependent variable. This 

count variable is Poisson distributed and requires correction for over-dispersion indicating the need 

for a negative binomial model. Because the unit of analysis is the plant, there are recurring instances 

of the same plant across multiple years, necessitating a panel model approach. Secondary panel 

datasets with repeated occurrences over time may be susceptible to endogeneity caused by omitted 

variable bias, cross-sectional and temporal auto-correlation, and heteroscedasticity. Fixed effects 

analysis can alleviate some potential omitted variable bias by de-meaning the data and eliminating 

time-invariant omitted variables from the error term that could be correlated with other predictors. 

Chances of endogeneity caused by omitted variable bias are significantly reduced when using a 

fixed effect model, while a random effects model is best used when the risk of omitted variable bias 

is low. Our primary analysis uses fixed effects negative binomial regression with bootstrapped 

standard errors (1000 repetitions). Bootstrapped standard errors are one mechanism to correct for 

heteroscedasticity and temporal auto-correlation (Guan, 2003; Greene, 2003; Staats and Gino, 2012; 

Yang, Zhou and Wang, 2010). We demonstrate consistency of these results using a random effects 

and logistic regression model during robustness checks.  
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4.4 Results 

We present descriptive statistics and correlation matrices in Table 4.2 and Tables 4.3-4.4 

respectively. Manufacturers take 54 days on average to open a recall after becoming aware of the 

defect, and almost a year to close the recall once opened. Moderate Severity recalls are correlated 

with longer time-to-open and time-to-close, while least severe recalls (Low Severity) are negatively 

correlated with open and close times. High Severity recalls are also correlated with a faster time-

to-classify. Design and software recalls are correlated with longer times to open and close while 

manufacturing and miscellaneous recalls are correlated with faster times. In relation to future recall 

occurrences, longer time-to-open and time-to-classify recalls are positively correlated with future 

recalls.  

Table 4.2 Description of Variables and Summary Statistics 

Variable Description Mean St dev. 
Research question one    
Time-To-Open Plant time from awareness to recall initiation (days) 54.43 152.12 
Time-To-Close Plant time from initiation to recall completion (days) 329.77 365.89 
Time-To-Classify FDA time from initiation to classification (days) 142.10 169.85 
Sales Sales at the plant in 10 sales categories 8.52 1.49 
Units Recalled Number of units recalled 157,992 2,585,401 
 Indicator Variables   
Public Indicator variable for public/private status of firm 0.58 0.49 
Design Design related recall 0.15 0.36 
Manufacturing Manufacturing related recall 0.32 0.46 
Software Software related recall 0.10 0.30 
Misc.  Miscellaneous category of recall causes 0.43 0.50 
High Severity Class I recall  0.04 0.19 
Moderator Severity Class II recall  0.84 0.37 
Low Severity Class III recall  0.12 0.33 
Research question two    
Future Recalls Total number of recalls initiated in the next year 2.03 3.56 
Lagged Class I Recalls Total number of class I recalls at plant current year 0.10 0.37 
Lagged Class II Recalls Total number of class II recalls at plant current year 2.24 3.29 
Lagged Class III Recalls Total number of class III recalls at plant current year 0.36 0.85 
Avg Units Per Recall Average number of units recalled in the current year 205,093 1,787,273 
Process Time    
Time-To-Open Current year average time-to-open (days) 41.82 111.81 
Time-To-Close Current year average time-to-close (days) 280.40 298.11 
Time-To-Classify Current year average time-to-classify (days) 138.28 193.25 
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Table 4.3 Recall Level Correlation Matrix-Research Question One 

  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] 
Time-To-Open [1] 1.00             
Time-To-Close [2] 0.18* 1.00            
Time-To-Classify [3] -0.07* 0.15* 1.00           

Sales   [4] 0.06* 0.04* -0.01 1.00          

Public [5] 0.03* 0.05*   0.02 0.27* 1.00         

Units Recalled [6] 0.12* 0.17* -0.05* 0.15* 0.15* 1.00        
Design [7] 0.07* 0.13* 0.06* -0.00 0.01 0.05* 1.00       
Manufacturing [8] -0.01 -0.12* 0.05*  -0.03* -0.07* 0.00 -0.29* 1.00      
Software [9] 0.09* 0.10* 0.11* 0.02 0.07* -0.11* -0.14* -0.22* 1.00     
Misc. [10] -0.09* -0.04*  -0.17* 0.01 0.01 0.03* -0.37* -0.59* -0.29* 1.00    
High Severity [11] 0.02 0.01  -0.07* 0.00 0.00 0.11* 0.12* -0.00 0.03 -0.07* 1.00   
Moderate Severity [12] 0.06* 0.13* 0.02    0.05* 0.02 0.02 0.03* 0.00 0.09* -0.07* -0.45* 1.00  
Low Severity [13] -0.08* -0.16* 0.01   -0.05* -0.02 -0.09* -0.11* 0.00 -0.09* 0.13* -0.08* -0.86* 1.00 

Table 4.4 Plant Level Correlation Matrix-Research Question Two 

  [1] [2] [3] [4] [5] [6] [7] [8] 

Future Recalls [1] 1.00        

Lagged Class I [2] 0.05* 1.00       

Lagged Class II [3] 0.35* 0.00 1.00      

Lagged Class III [4] 0.11* -0.02 -0.13* 1.00     

Ln_Avg Units Recalled [5] 0.05 0.21* 0.25* -0.02 1.00    

Time-To-Open [6] 0.12* 0.10* 0.29* -0.10 0.19* 1.00   

Time-To-Close [7] -0.00 0.08* 0.31* -0.11* 0.30* 0.26* 1.00  

Time-To-Classify [8] 0.11* -0.04 0.19* 0.03 -0.03 0.05 0.19* 1.00 
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 The results for testing Hypotheses 1A are presented in Table 4.5. We include control variables 

which may affect time-to-open a recall (column 1). Compared to 2013, recalls in all previous years 

took a longer time-to-open, as seen by the negative and significant beta coefficient in the CPH 

model. Not surprisingly, the more units associated with a recall, the longer it took manufacturers to 

open the recall. In comparison to design recalls, manufacturing and miscellaneous recalls are 

opened quicker. We next incorporate the main effect of recall severity (columns 2) in a CPH model. 

More severe recalls took longer to open than least severe recalls, (fail to reject Hypothesis 1A), as 

indicated by the negative and significant coefficients for High Severity and Moderate Severity in 

column 2. Specifically, in comparison to the least severe recalls, moderate and high several recalls 

took 20% longer to open (exp-0.23=0.80). Using an average time-to-open of 54 days, this means that 

high and moderately severe recalls took 10 additional days to open than least severe recalls. 

Columns 3-6 in Table 4.5 substantiate these conclusions with four different AFT models which do 

not assume proportionality. We observe that in all but one case (log logistic, High Severity) every 

beta coefficient for High Severity and Moderate Severity in each of the AFT models are positive 

and significant, indicating that manufacturers take a longer time to open a recall when the recall is 

High or Moderate Severity, as compared to one that is the least severe. 

 Table 4.6 includes the results for the time-to-close analysis. We observe very similar results 

for time-to-close as with time-to-open. All control variables are similar in sign and significance 

(column 1). High and Moderate Severity recalls are both associated with a longer time-to-close 

when compared to the least severe recalls. Specifically, High Severity recalls take 23% longer to 

close, equating to 76 additional days, while Moderate Severity recalls take 72% longer to close, or 

250 additional days. We reject Hypothesis 1B as contrary to our expectations and theory, 

manufacturing plants take longer to close a more severe recall than a less severe recall. 
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Table 4.5 Hazard Model: Time-To-Open 

  Accelerated Failure Time Models 

 
CPH 
Model 

CPH 
Model 

Log 
Normal 

Log 
Logistic Exponential 

 
Weibull 

 (1) (2) (3) (4) (5) (6) 
Sales -0.03 -0.03 0.04 0.04 0.06 0.06 
 (0.02) (0.02) (0.04) (0.05) (0.05) (0.05) 
Public -0.01 -0.01 -0.00 0.00 -0.00 0.01 
 (0.10) (0.10) (0.20) (0.22) (0.21) (0.22) 
Ln_Units_Recalled -0.32** -0.03* 0.08** 0.09** 0.05* 0.07* 
 (0.11) (0.01) (0.03) (0.03) (0.03) (0.03) 
2003 -0.41*** -0.34** 0.45+ 0.34 1.12*** 0.82*** 
 (0.11) (0.11) (0.25) (0.30) (0.25) (0.24) 
2004 -0.38** -0.44*** 0.56* 0.46 1.41*** 1.04*** 
 (0.12) (0.11) (0.24) (0.30) (0.23) (0.23) 
2005 -0.40*** -0.39** 0.51* 0.40 1.23*** 0.94*** 
 (0.11) (0.12) (0.26) (0.31) (0.24) (0.25) 
2006 -0.36*** -0.40*** 0.61* 0.53+ 1.21*** 0.98*** 
 (0.10) (0.11) (0.24) (0.29) (0.20) (0.23) 
2007 -0.31** -0.36*** 0.53* 0.49+ 1.15*** 0.87*** 
 (0.10) (0.10) (0.22) (0.26) (0.23) (0.21) 
2008 -0.28** -0.31** 0.42+ 0.37 1.13*** 0.77*** 
 (0.09) (0.10) (0.22) (0.26) (0.23) (0.22) 
2009 -0.43*** -0.28** 0.34+ 0.25 1.06*** 0.72*** 
 (0.10) (0.09) (0.19) (0.23) (0.20) (0.20) 
2010 -0.29** -0.43*** 0.74*** 0.74** 1.22*** 1.03*** 
  (0.09) (0.10) (0.20) (0.25) (0.22) (0.22) 
2011 -0.15+ -0.29** 0.57** 0.63* 0.71*** 0.66** 
 (0.09) (0.09) (0.21) (0.25) (0.21) (0.21) 
2012 -0.03* -0.15+ 0.27 0.31 0.39* 0.33+ 
 (0.01) (0.08) (0.21) (0.25) (0.18) (0.19) 
Manufacturing 0.25*** 0.23*** -0.38*** -0.37** -0.51*** -0.53*** 
 (0.05) (0.05) (0.10) (0.12) (0.12) (0.11) 
Software -0.09 -0.09 0.25 0.36 0.09 0.17 
 (0.11) (0.11) (0.27) (0.33) (0.21) (0.24) 
Misc. 0.44*** 0.40*** -0.63*** -0.57** -1.04*** -0.97*** 
 (0.06) (0.07) (0.15) (0.20) (0.11) (0.12) 
High Severity  -0.23* 0.40* 0.37 0.72*** 0.58** 
  (0.09) (0.20) (0.24) (0.20) (0.21) 
Moderate Severity  -0.23*** 0.35** 0.34* 0.62*** 0.53*** 
  (0.06) (0.13) (0.15) (0.13) (0.14) 
Constant   0.79+ 0.65 1.89*** 1.38** 
   (0.44) (0.49) (0.45) (0.47) 
Observations 4394 4394 4394 4394 4394 4394 
χ2/R2 140.41 167.08 75.09 61.14 236.80 154.24 

  Standard errors in parentheses + p<0.10, *p<0.05, **p<0.01, ***p<0.001                                                                                                                                                                           
 

 Finally, the hazard model results testing the relationship between recall severity and the 

FDA’s time-to-classify a recall are presented in Table 4.7. In comparison to 2013, many previous 

years had a longer time-to-classify, as indicated by the negative and significant beta coefficient on 

years 2003 through 2012. In comparison to design related recalls, recalls that fall into a 



  
 

100 
 
 
 

miscellaneous category are classified faster. Moving to column 2, we observe that High Severity 

recalls are classified significantly faster than least severe recalls. If a recall is of the High Severity 

class, it will be classified 542% faster than a least severe class (e1.86=6.42). We fail to reject 

Hypothesis 1C, as the FDA moves quickly to classify the most serious types of medical device 

recalls. 

 Results related to research question two are reported in Table 4.8. Fixed effects models do 

not include sales and public predictors as these variables do not change over time for each plant in 

our data and a FE analysis eliminates observed and unobserved time-invariant predictors. Two of 

the year indicator variables are negative predictors of future recalls, while the lagged recalls both 

by type of recall and units affected per recall do not affect future recalls. Ln_Process Time 

represents the average time-to -open (column 2), -close (column 3) or -classify (column 4) in Table 

4.8. We reject Hypothesis 2A, as time-to-open has no relationship with future recalls but fail to 

reject Hypothesis 2B. We find that time-to-close is a negative and significant predictor of future 

recalls. Therefore, plants that take a longer time-to-close a recall have fewer future recalls.  

 Because the process time variable is natural log transformed within a negative binomial 

analysis (creating a log-log model), the beta coefficient is interpreted as the elasticity of the number 

of recalls per plant per year with respect to the number of days it takes to close a recall. In other 

words, a 1% change in the number of days to close a recall is associated with a -0.1% (β= -0.09) 

change in the number of recalls per plant per year. The average number of recalls per plant per year 

is 2.03 or 22 recalls across the 11-year panel, and the average time-to-close a recall is 280 days, 

with a standard deviation of 298 days. A one standard deviation change in the number of days to 

close a recall (298 days) would lead to two fewer recalls per plant across the 11-year panel. An 

increase in just 140 days (one half of one standard deviation, or approximately four months) to 

close a recall equates to one less medical device recalls across the 11-year panel. This is significant 

as even one medical device recall touches 158,000 patients on average in the US (average units 

recalled is 157,992 per Table 4.2). Finally, we reject Hypothesis 2C: There appears to be no 

relationship between FDA time-to-classify and future recalls. 

 

 

 



  
 

101 
 
 
 

Table 4.6 Hazard Model: Time-To-Close 

  Accelerated Failure Time Models 

 
CPH 
Modela 

CPH 
Model 

Log 
Normal 

Log 
Logistic Exponential 

 
Weibull 

 (1) (2) (3) (4) (5) (6) 
Sales 0.00 0.01 -0.00 -0.01 -0.00 -0.00 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
Public 0.02 0.02 -0.01 0.04 -0.04 -0.04 
 (0.07) (0.07) (0.08) (0.08) (0.07) (0.07) 
Ln_Units_Recalled -1.00*** -1.02*** 0.66*** 0.62*** 0.96*** 0.98*** 
 (0.16) (0.16) (0.13) (0.13) (0.15) (0.16) 
2003 -1.00*** -1.02*** 0.68*** 0.63*** 0.97*** 0.98*** 
 (0.16) (0.16) (0.13) (0.12) (0.15) (0.15) 
2004 -1.01*** -1.02*** 0.76*** 0.66*** 0.96*** 0.97*** 
 (0.16) (0.16) (0.12) (0.11) (0.14) (0.15) 
2005 -1.17*** -1.16*** 0.83*** 0.76*** 1.12*** 1.14*** 
 (0.16) (0.16) (0.14) (0.13) (0.15) (0.15) 
2006 -1.06*** -1.06*** 0.73*** 0.67*** 0.98*** 0.99*** 
 (0.15) (0.15) (0.12) (0.11) (0.13) (0.13) 
2007 -1.06*** -1.04*** 0.73*** 0.73*** 0.94*** 0.95*** 
 (0.15) (0.15) (0.12) (0.10) (0.12) (0.13) 
2008 -1.09*** -1.07*** 0.81*** 0.81*** 0.94*** 0.94*** 
 (0.14) (0.14) (0.11) (0.10) (0.12) (0.12) 
2009 -1.00*** -0.98*** 0.78*** 0.79*** 0.83*** 0.83*** 
 (0.14) (0.14) (0.11) (0.09) (0.11) (0.12) 
2010 -0.82*** -0.80*** 0.63*** 0.65*** 0.66*** 0.65*** 
  (0.13) (0.13) (0.11) (0.09) (0.11) (0.11) 
2011 -0.43*** -0.41*** 0.38*** 0.36*** 0.32** 0.31** 
 (0.12) (0.12) (0.10) (0.08) (0.11) (0.11) 
2012 -0.04*** -0.04*** 0.06*** 0.06*** 0.04*** 0.04** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Manufacturing 0.35*** 0.32*** -0.42*** -0.41*** -0.29*** -0.28*** 
 (0.06) (0.05) (0.06) (0.06) (0.06) (0.06) 
Software -0.02 -0.02 0.04 0.07 0.01 0.00 
 (0.06) (0.06) (0.08) (0.07) (0.06) (0.06) 
Misc. 0.31*** 0.29*** -0.33*** -0.32*** -0.29*** -0.28*** 
 (0.06) (0.06) (0.07) (0.07) (0.06) (0.06) 
High Severity  -0.27* 0.38** 0.32** 0.31* 0.30* 
  (0.11) (0.13) (0.12) (0.13) (0.13) 
Moderate Severity  -1.28*** 0.45*** 0.41*** 0.33*** 0.32*** 
  (0.25) (0.09) (0.07) (0.08) (0.08) 
Constant   4.02*** 4.21*** 4.60*** 4.64*** 
   (0.24) (0.21) (0.23) (0.24) 
Observations 4394 4394 4394 4394 4394 4394 
χ2/R2 245.86 251.37 274.39 290.93 261.69 261.40 

  Standard errors in parentheses + p<0.10, *p<0.05, **p<0.01, ***p<0.001                                                                                                                                                                       
  a Time-varying covariate used for Moderate Severity. Moderate Severity interacted with ln of time 
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Table 4.7 Hazard Model: Time-To-Classify 

  Accelerated Failure Time Models 

 
CPH 
Modela 

CPH 
Model 

Log 
Normal 

Log 
Logistic Exponential 

 
Weibull 

 (1) (2) (3) (4) (5) (6) 
Sales -0.01 -0.01 0.02 0.02 0.01 0.01 
 (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) 
Public -0.05 -0.04 0.05 0.03 0.05 0.05 
 (0.09) (0.08) (0.08) (0.08) (0.11) (0.11) 
Ln_Units_Recalled -0.36+ -0.32+ 0.22+ 0.12 0.45+ 0.44+ 
 (0.19) (0.19) (0.13) (0.12) (0.26) (0.25) 
2003 -0.49* -0.47* 0.25 0.12 0.66* 0.65* 
 (0.22) (0.21) (0.17) (0.15) (0.30) (0.29) 
2004 -0.44* -0.42* 0.34* 0.31* 0.42 0.43+ 
 (0.18) (0.18) (0.14) (0.13) (0.26) (0.25) 
2005 -0.67*** -0.65*** 0.55*** 0.46*** 0.82** 0.81** 
 (0.20) (0.20) (0.16) (0.13) (0.30) (0.29) 
2006 -0.88*** -0.87*** 0.91*** 0.91*** 0.86*** 0.87*** 
 (0.16) (0.16) (0.11) (0.10) (0.23) (0.22) 
2007 -1.04*** -1.04*** 1.11*** 1.09*** 1.09*** 1.10*** 
 (0.16) (0.17) (0.11) (0.10) (0.24) (0.23) 
2008 -1.03*** -1.03*** 1.04*** 1.02*** 1.12*** 1.13*** 
 (0.17) (0.17) (0.12) (0.12) (0.24) (0.22) 
2009 -0.77*** -0.77*** 0.77*** 0.77*** 0.71** 0.73*** 
 (0.16) (0.17) (0.11) (0.11) (0.23) (0.22) 
2010 -0.47** -0.47** 0.41*** 0.38*** 0.43+ 0.44* 
  (0.15) (0.16) (0.10) (0.09) (0.23) (0.21) 
2011 -0.19 -0.19 0.16+ 0.19* 0.05 0.06 
 (0.14) (0.15) (0.10) (0.09) (0.21) (0.20) 
2012 0.02* 0.02+ -0.02+ -0.02 -0.03+ -0.03+ 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Manufacturing 0.08 0.10* -0.08 -0.08 -0.14+ -0.13+ 
 (0.06) (0.05) (0.05) (0.05) (0.07) (0.07) 
Software -0.13+ -0.11 0.17* 0.16* 0.16+ 0.16+ 
 (0.07) (0.07) (0.07) (0.08) (0.09) (0.09) 
Misc. 0.19* 0.22* -0.15 -0.10 -0.33** -0.33** 
 (0.09) (0.09) (0.10) (0.09) (0.12) (0.12) 
High Severity  1.86*** -0.46** -0.50*** -0.22 -0.24 
  (0.45) (0.16) (0.13) (0.29) (0.28) 
Moderate Severity  0.23 -0.15* -0.15* -0.13 -0.13 
  (0.26) (0.07) (0.07) (0.08) (0.08) 
Constant   3.86*** 3.81*** 4.54*** 4.49*** 
   (0.24) (0.23) (0.36) (0.35) 
Observations 4394 4394 4394 4394 4394 4394 
χ2/R2 201.71 229.02 284.59 299.34 210.63 210.90 

Standard errors in parentheses + p<0.10, *p<0.05, **p<0.01, ***p<0.001                                                                                                                                                             
a Time-varying covariate used for Moderate and High Severity. Moderate and High Severity interacted with ln of time 

 
To test the robustness of our relationships, we repeat the analysis using a random effects 

negative binomial model and a logistic regression model (Table 4.9). For the logistic regression, 

we created an indicator variable which equals one if there were any recalls in the plant in a specific 
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year, and zero otherwise. All of our conclusions using these additional models hold. 

Table 4.8 Negative Binomial Fixed Effects Regression: Future Recalls and Process Time 

 Controls Open Close Classify 
 (1) (2) (3) (4) 
Lagged Class I Recalls -0.03 -0.04 -0.03 -0.03 
 (0.07) (0.07) (0.07) (0.07) 
Lagged Class II Recalls 0.00 0.00 0.01 0.00 
 (0.01) (0.01) (0.01) (0.01) 
Lagged Class III Recalls 0.02 0.02 0.02 0.01 
 (0.03) (0.03) (0.03) (0.03) 
Ln_Average Units Per Recall -0.02+ -0.02+ -0.02 -0.02+ 
 (0.01) (0.01) (0.01) (0.01) 
2004 -0.04 -0.04 -0.02 -0.03 
 (0.11) (0.11) (0.11) (0.11) 
2005 -0.26* -0.26* -0.22+ -0.26* 
 (0.12) (0.12) (0.12) (0.12) 
2006 -0.01 -0.02 0.03 -0.02 
 (0.12) (0.11) (0.11) (0.12) 
2007 0.14 0.13 0.19+ 0.13 
 (0.12) (0.12) (0.12) (0.12) 
2008 0.15 0.14 0.20+ 0.14 
 (0.11) (0.11) (0.11) (0.12) 
2009 0.07 0.06 0.14 0.06 
 (0.12) (0.12) (0.12) (0.13) 
2010 0.08 0.07 0.15 0.07 
 (0.14) (0.14) (0.14) (0.15) 
2011 -0.26 -0.28+ -0.17 -0.27+ 
  (0.16) (0.16) (0.16) (0.16) 
2012 -1.12*** -1.13*** -1.03*** -1.12*** 
 (0.17) (0.17) (0.16) (0.17) 
Ln_Process Time  0.02 -0.09* 0.02 
  (0.02) (0.05) (0.04) 
Constant 1.32*** 1.29*** 1.71*** 1.23*** 
 (0.18) (0.18) (0.27) (0.24) 
Observations 1269 1269 1269 1269 
χ2/R2 127.38 135.59 160.91 138.27 

Standard errors in parentheses+ p<0.10, *p<0.05, **p<0.01, ***p<0.001                                                                                                                                                          
Bootstrapped standard errors with 1000 repetitions 

 
It is possible that the relationship between recall responsiveness and future recalls varies 

based on recall severity. We perform post-hoc analyses by differentiating on recall severity as the 

dependent variable (Table 4.10). Interesting relationships are observed when this distinction is 

made. Beginning with class I recalls (columns 1-3) we observe that Ln_Process Time for the time-

to-close a recall retains its negative and significant relationship only with future class I recalls, and 

that time-to-open and time-to-classify have no relationship with future class I recalls. Moving to 

class II recalls (columns 4-6), we observe a marginally negative and significant relationship 



  
 

104 
 
 
 

between time-to-close and future recalls, and no other time phases significant. For class III recalls 

(columns 7-9), there is a positive and significant relationship between the FDA’s time-to-classify 

and future recalls. In other words, the longer the FDA takes to classify a recall, the more class III 

recalls the plant will experience in the future.  

Table 4.9 Robustness Checks: Future Recalls and Process Time 

 Open Close Classify 

 
Random 
Effects 

Logistic Random 
Effects 

Logistic Random 
Effects 

Logistic 

 (1) (2) (3) (4) (5) (6) 
Sales 0.17*** 0.27*** 0.17*** 0.27*** 0.16*** 0.27*** 
 (0.03) (0.06) (0.03) (0.06) (0.03) (0.06) 
Public 0.37** 0.64*** 0.38*** 0.66*** 0.38*** 0.67*** 
 (0.11) (0.19) (0.11) (0.19) (0.11) (0.20) 
Lagged Class I Recalls 0.00 0.19 0.01 0.21 0.01 0.22 
 (0.07) (0.21) (0.07) (0.21) (0.07) (0.21) 
Lagged Class II Recalls 0.02* 0.18*** 0.02** 0.20*** 0.02* 0.18*** 
 (0.01) (0.04) (0.01) (0.04) (0.01) (0.04) 
Lagged Class III Recalls 0.03 0.13 0.03 0.13 0.03 0.12 
 (0.03) (0.10) (0.03) (0.10) (0.03) (0.10) 
Ln_Average Units Per Recall -0.02 -0.04 -0.01 -0.02 -0.01 -0.03 
 (0.01) (0.03) (0.01) (0.03) (0.01) (0.03) 
2004 -0.08 -0.54 -0.05 -0.44 -0.07 -0.48 
 (0.13) (0.35) (0.13) (0.35) (0.13) (0.35) 
2005 -0.30* -0.74* -0.25+ -0.59+ -0.29* -0.69* 
 (0.14) (0.34) (0.14) (0.34) (0.14) (0.34) 
2006 -0.07 -0.29 -0.02 -0.16 -0.07 -0.28 
 (0.13) (0.34) (0.13) (0.34) (0.13) (0.34) 
2007 0.08 -0.25 0.14 -0.12 0.08 -0.25 
 (0.13) (0.34) (0.13) (0.34) (0.13) (0.34) 
2008 0.08 -0.20 0.13 -0.06 0.06 -0.26 
 (0.13) (0.34) (0.13) (0.34) (0.13) (0.34) 
2009 0.02 -0.33 0.10 -0.16 0.01 -0.39 
 (0.13) (0.34) (0.13) (0.34) (0.13) (0.34) 
2010 0.03 -0.35 0.10 -0.17 0.02 -0.38 
 (0.13) (0.35) (0.13) (0.35) (0.13) (0.35) 
2011 -0.34* -1.04** -0.23 -0.79* -0.32* -1.04** 
  (0.14) (0.35) (0.14) (0.35) (0.14) (0.34) 
2012 -1.22*** -2.27*** -1.13*** -2.03*** -1.21*** -2.24*** 
 (0.17) (0.35) (0.17) (0.36) (0.17) (0.35) 
Ln_Process Time 0.03 0.05 -0.08* -0.17* 0.03 0.13 
 (0.02) (0.04) (0.04) (0.08) (0.04) (0.08) 
Constant -0.68* -2.18*** -0.33 -1.51* -0.79* -2.68*** 
 (0.34) (0.57) (0.37) (0.62) (0.37) (0.66) 
Observations 1491 1491 1491 1491 1491 1491 
χ2/R2 163.33 133.70 164.60 136.78 161.88 133.94 

 Standard errors in parentheses + p<0.10, *p<0.05, **p<0.01, ***p<0.001 
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Table 4.10 Post-Hoc Analysis: Negative Binomial Fixed Effects Regression: Future Recalls of Different Recall Classes and Process Time 

 Class 1 Recalls Class 2 Recalls Class 3 Recalls 
 Open Close Classify Open Close Classify Open Close Classify 
  (1)  (2)   (3)   (4)   (5)    (6)   (7)   (8)   (9) 
Lagged Class I Recalls -0.49* -0.49* -0.51** 0.02 0.02 0.02 0.08 0.09 0.09 
 (0.20) (0.20) (0.20) (0.08) (0.08) (0.08) (0.19) (0.20) (0.20) 
Lagged Class II Recalls 0.03 0.03 0.03 -0.00 0.00 0.00 -0.03 -0.02 -0.03 
 (0.03) (0.03) (0.03) (0.01) (0.01) (0.01) (0.03) (0.03) (0.03) 
Lagged Class III Recalls -0.19 -0.24 -0.21 0.02 0.02 0.02 -0.00 0.00 -0.02 
 (0.17) (0.17) (0.17) (0.03) (0.03) (0.03) (0.05) (0.05) (0.05) 
Ln_Average Units Per Recall 0.05 0.08 0.05 -0.03* -0.02 -0.03* -0.02 -0.01 -0.02 
 (0.05) (0.05) (0.05) (0.01) (0.01) (0.01) (0.03) (0.03) (0.03) 
2004 -0.17 -0.08 -0.14 0.06 0.08 0.06 -0.15 -0.14 -0.04 
 (0.52) (0.52) (0.52) (0.15) (0.15) (0.15) (0.25) (0.25) (0.25) 
2005 -1.16+ -0.92 -1.16+ -0.08 -0.04 -0.08 -0.85** -0.80** -0.82** 
 (0.68) (0.68) (0.66) (0.15) (0.15) (0.15) (0.29) (0.29) (0.28) 
2006 -0.51 -0.23 -0.55 0.17 0.21 0.18 -0.64* -0.60* -0.64* 
 (0.52) (0.54) (0.52) (0.14) (0.15) (0.14) (0.27) (0.27) (0.27) 
2007 -0.94 -0.66 -1.00+ 0.37** 0.42** 0.38** -0.78** -0.72* -0.79** 
 (0.59) (0.60) (0.59) (0.14) (0.14) (0.14) (0.29) (0.29) (0.28) 
2008 0.27 0.39 0.09 0.37** 0.42** 0.40** -1.25*** -1.20*** -1.33*** 
 (0.46) (0.46) (0.48) (0.14) (0.14) (0.14) (0.32) (0.32) (0.32) 
2009 -0.16 0.06 -0.32 0.33* 0.40** 0.37* -1.36*** -1.27*** -1.46*** 
 (0.48) (0.49) (0.50) (0.14) (0.14) (0.14) (0.34) (0.35) (0.34) 
2010 0.13 0.33 -0.08 0.32* 0.38** 0.35* -1.35*** -1.26*** -1.48*** 
 (0.51) (0.51) (0.52) (0.14) (0.15) (0.15) (0.34) (0.34) (0.34) 
2011 -0.44 -0.18 -0.59 -0.02 0.07 0.02 -1.51*** -1.38*** -1.55*** 
  (0.54) (0.53) (0.52) (0.16) (0.16) (0.15) (0.36) (0.37) (0.36) 
2012 -1.64* -1.37+ -1.79* -0.87*** -0.79*** -0.86*** -1.98*** -1.84*** -1.90*** 
 (0.75) (0.76) (0.74) (0.18) (0.19) (0.18) (0.40) (0.40) (0.39) 
Ln_Process Time -0.07 -0.34* 0.09 0.02 -0.07+ -0.03 0.05 -0.09 0.25** 
 (0.09) (0.14) (0.15) (0.02) (0.04) (0.04) (0.06) (0.10) (0.09) 
Constant 0.85 2.09* 0.59 1.23*** 1.54*** 1.39*** 1.07* 1.55* 0.22 
 (0.89) (1.01) (1.10) (0.19) (0.24) (0.25) (0.46) (0.63) (0.60) 
Observations 353 353 353 1241 1241 1241 670 670 670 
χ2/R2 25.98 31.76 26.39 110.37 113.07 110.13 57.52 58.61 65.47 
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4.5 Discussion and Implications 

 We investigate causes and consequences of responsiveness in the medical device product 

recall process. We seek to understand what leads manufacturers to move quickly to respond to 

product problems in the marketplace and to uncover levers which can be used to increase learning 

and reduce future recalls. To our knowledge, this analysis is the first to predict 1) recall 

responsiveness using distinct time intervals computed with actual date and time stamps and 2) 

future recalls as a function of responsiveness. We first discuss the causes of plant and regulator 

responsiveness, and then the effects of this responsiveness.  

Plants are slower to both open and close a recall when the problem is most severe. These 

findings provide empirical evidence that plants may not be responsive to the most serious problems. 

Not opening the most serious recalls fast may indicate resistance from the plant to expose 

themselves to negative publicity from the public and sanctions from regulators, while at the same 

time increasing risks to customers. This result is consistent with prospect theory (Kahneman and 

Tversky, 1979) predictions, managers are demonstrating risk-averseness with severe product recalls. 

While this resistance is understandable, these are precisely the types of product problems that 

managers should be most responsive to. These findings should spur managers to greater vigilance 

and reaction time when investigating the most serious product problems. Popular media coverage 

of recent serious recalls in multiple industries supports a case for increased vigilance. In relation to 

closing a recall, the results are more encouraging. More severe recalls lead to longer recall closure 

times. This unexpected result may indicate that once a recall has been opened, plants choose 

thoroughness over reputation. Possibly, the pressure to not open a severe recall is more severe than 

the pressure to close a severe recall quickly once opened. From a regulator perspective, the most 

severe recalls are classified the fastest, consistent with theory and with FDA’s policy goals.35  

In relation to future recalls, responsiveness in opening a recall does not affect future recalls 

but responsiveness in closing a recall does. Two conclusions can be drawn from these findings. 

Once the initial defect is detected, additional time taken to observe more manifestations of the 

defect does not seem to result in useful learning to be applied to future product quality. However, 

                                                        
35 http://www.fda.gov/ICECI/ComplianceManuals/RegulatoryProceduresManual/ucm177311.htm 
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scrutinizing the root cause and corrective action of the recall once it is opened does seem to be an 

important mechanism for learning and reflection. Plants which take the most time in this phase 

identifying root cause and corrective action, communicating with customers and the FDA, and 

repairing or replacing contaminated products, have fewer future recalls. These results are consistent 

with research related to the quality-speed conundrum (Anand et al., 2011). Engineers and managers 

tasked with investigating product quality problems may cut corners and move too quickly at times, 

which may hinder their full understanding of the problem and its applicability to future products. 

When the analysis includes a distinction of recall severity, the findings are more nuanced. 

Surprisingly, the relationship between the time-to-close a recall and fewer future recalls persists for 

the most severe recalls only. This may signify the prioritization of newly learned information within 

the manufacturer. As plants learn from their mistakes in the recall closure process, knowledge may 

only be incorporated within the most serious aspects of future products and processes. While FDA’s 

time-to-classify was not significant in the main analysis, recall differentiation in Table 4.10 

indicates that FDA responsiveness does impact future recalls, but only the least serious types of 

recalls (class III recalls).  

We validated our findings with both senior industry and FDA personnel. The global vice-

president for quality and her staff at one of the world’s largest medical device companies 

crystallized the findings related to plant recall responsiveness. In her view, medical device 

manufacturers that do not prioritize quality enough are more likely to quickly push through the 

recall closure process and learn little from the recall. This individual informed us of her strategy to 

move quickly to open a recall when the problem is apparent, but to not rush through the root cause 

and corrective action identification state of closing a recall. Additionally, a senior director at the 

FDA’s Center for Device and Radiological Health (CDRH) who was instrumental during data 

collection shared her belief that plants which rush through the recall process, especially in closing 

the recalls, do not learn what that they need to avoid future problems. This work provides 

confirmation for these senior industry and regulatory leaders and can enlighten similar individuals 

previously unaware of these important relationships. 

 
Implications 

There are four implications of this study. First, firms should open recalls quickly to protect 
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public health and safety. The possibility of lost learning is minimal when moving quickly to open 

a recall. Second, firms should take great care to not rush the recall closure process, extract maximal 

learning from the root cause and corrective action investigation process, and apply such learning to 

future product design and manufacturing processes. Third, they should take steps to apply this 

learning more broadly, as the recall reduction benefits of the recall closure process seem to only 

impact the most serious class I recalls, though one can imagine that the lessons learned from these 

experiences could be used to reduce all classes of future recalls. Finally the FDA is cautioned to 

not rush manufacturers to close recalls too quickly. Empirical evidence suggests that the time that 

the plant takes in this phase of the product recall process is associated with fewer future recalls. 

Instead of pushing plants to close recalls quickly, the FDA may instead use this phase of the process 

to aid manufacturers in deepening their understanding of the problem and ensuring that the lessons 

learned from each individual recall are applied as broadly as possible to future product 

manufacturing and design. 

 Our research has certain limitations. While fixed-effects analyses help mitigate significant 

sources of unobserved heterogeneity, some sources may still remain. For instance, collecting firm-

level data and incorporating this into the analyses may provide additional insights. While 

preliminary analyses indicate it is not a concern, further work can be done regarding queueing 

effects and reverse causality in this dataset. It is possible that longer response times occur because 

more recalls are in queue to be closed or classified, and that this increase in the number of recalls 

impacts future recall occurrences and learning. Repeating these analyses with two, three, or four 

years after the response times are measured could also expand our understanding.  
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Chapter 5:  
 
Conclusion 
 

Product recalls have attracted sparse attention from scholars. While the current state of 

research identifies ramifications of recalls, leading indicators of recalls remain relatively 

unexplored. While studying recalls in any regulated industry would contribute to existing theory 

and benefit practitioners, I focus my dissertation on medical device recalls because of its potential 

to impact public health and safety, and the ever-increasing economic footprint of this industry. 

Although regulators work tirelessly to root out medical device recalls, they are still on the rise. 

While no one party (FDA or industry managers) may be able to completely prevent quality 

problems leading to recalls, this dissertation provides steps that both regulators and manufacturers 

can take to contain the increasing recall trend.  

The dissertation consisted of three chapters, where each chapter addressed an important 

phase in the product recall process (Figure 5.1, repeated from Figure 1.1): Recall causes, decision-

making, and responsiveness. This body of research contributes significantly to practice and theory 

related to product recalls. I summarize each chapter’s individual contribution, areas for future 

research, and generalizability to other industries, below. I conclude with two important themes that 

can be derived from a holistic examination of the results of this dissertation. 

 

Figure 5.1 Dissertation Structure 
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In chapter 2, I studied plant inspection results and the risks of using repeat inspectors to 

inspect a plant. Plant inspections occur on a regular basis with great frequency around the globe, 

and are used to manage supply chain quality, evaluate potential suppliers, and regulate product 

quality requirements laid out by regulatory bodies. This research demonstrated that these plant 

inspections serve a purpose, not only by adequately assessing the future quality risk at plants, but 

also by providing failing plants with an impetus for improvement. However, the investigator 

experience effects unearthed in this study also showed that such inspection regimes need to be 

carefully managed to remain effective. Using multiple Cox proportional hazard and propensity 

score matching models, I demonstrated that inspector rotation may serve to abate the negative 

effects of complacency and reduce the number of medical device recalls. Future research may 

identify additional criteria of inspectors that may influence their inspection accuracy, such as 

training, gender, experience and education. Additionally, future work may incorporate other 

dependent variables as measures of plant quality performance, such as medical device product 

complaints (MAUDE database) or internal measures of quality such as rework. 

In chapter 3, I used industry managers to study behavioral factors influential in the medical 

device product recall decision. Through numerous hours of interviews with industry and regulatory 

managers, I identified potential situational and dispositional factors that may influence managers 

to decide to recall. I found that defect detectability and root cause understanding are both positively 

related to the likelihood of a recall decision. Additionally, I found that there are direct and indirect 

effects of a manager’s CRT score. High CRT managers are significantly less likely to decide to 

recall, independent of any of the experimental factors. CRT also moderates several relationships in 

this study. Low CRT managers are only influenced by dispositional factors such as gender, 

experience, functional area, and their relationship with the FDA. High CRT managers are strongly 

influenced by the root cause understanding of the defect, and marginally influenced by defect 

detectability. Future work may include a student subject experiment, investigating the differences 

between actual industry managers and student subjects in a highly contextual setting such as 

product recalls. Additionally, incorporating a team-based experiment, which would simulate real-

life recall decisions even more closely, may significantly add to these findings. 

Finally, in chapter 4, I documented potential causes and effects of recall responsiveness for 

the firm and the regulator. Firms wait the longest to open the most severe recalls, while regulators 
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move the fastest on these types of recalls. Firms however take the longest amount of time-to-close 

severe recalls, apparently using extra time to study the root cause and corrective action thoroughly. 

While the time-to-open a recall has little relationship with future recalls, the time-to-close 

significantly reduces future recalls. Firms that take a longer amount of time-to-close recalls have 

fewer future recalls, but this is only statistically significant for the most severe types of future 

recalls. This may indicate learning on the part of the firm which is applied to the most important 

future product manufacturing and design processes. Implications of this study are clear: firms 

should open recalls quickly, close recalls slowly and apply recall learning more broadly. Regulators 

are cautioned from the results of this research to not rush firms in the recall closure process. Future 

avenues of research include a case-study which can track activities in the recall open and closing 

process to improve our knowledge of how learning is created in this process and how it is applied 

to future products to successfully reduce future recalls.  

To highlight the similarities and differences among each chapter, I provide an overview of 

the dissertation in Table 5.1. While all three studies are conducted in the context of the medical 

device industry and involve drivers of medical device recalls, they are distinct in their units of 

analyses and the resulting implications. While chapters 2 and 4 are conducted at the plant level, 

chapter 3 is at the individual manager level. Thus, chapters 2 and 4 results can be applied to the 

plants in the medical device industry where as chapter 3 results are applicable to managers making 

the recall decision. While each chapter has implications for firms and regulators, they are distinctly 

different. Chapter 2 provides evidence for early warning signs for recalls at the plant, while firm 

implications for chapters 3 and 4 are behavioral in nature. They independently examine how, and 

how fast, firms’ implicit decision factors and decision speed respectively, impact the decision to 

recall and eventually future recalls. Implications for the FDA are similar in nature. Chapters 2 and 

3 indicate a downside of complacent or overly friendly relationships with firms, while chapter 4 

provides procedural guidance for FDA in managing firms through their regulation of the recall 

process.  
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Table 5.1 Dissertation Summary 

 
 Chapter #2 Chapter #3 Chapter #4 
Title Investigator 

Experience and 
Product Recalls in the 
Medical Device 
Industry 

The Decision to Recall: 
A Behavioral 
Investigation in the 
Medical Device 
Industry 

Slow or Fast? An 
Empirical Examination 
of the Recall 
Responsiveness 
Dilemma 
 

Industry Medical Device Fortune 500 Medical 
Device Company 

Medical Device  

Unit of Analysis Manufacturing Plant  Managerial Decision-
Maker 

Manufacturing Plant 
 

Data (Years) Secondary data (2000-
2006) 

Experimental data 
(2014) 

Secondary data (2000-
2013) 

Research 
Question 

* How effective are 
(FDA) plant inspection 
outcomes in predicting 
recalls? 
* How does inspector 
experience impact the 
predictability? 

* Which behavioral 
factors influence a 
manager’s decision to 
recall a product? 

* What leads to quick 
recall response times for 
firms and regulators?  
* How does 
responsiveness impact 
future recalls? 
 

Theoretical 
Lens 

Learning and 
Complacency  

Attribution Theory, 
Affect Heuristic, 
Customer Satisfaction 

Prospect Theory, 
Quality-Speed 
Conundrum 

Research 
Method 

Recurrent event, Cox 
proportional hazard 
model; Propensity score 
matching model 

Paired T-Test and 
Logistic Regression 

Accelerated failure time 
and Cox proportional 
hazard model; Fixed 
Effects panel data model 

Firm 
Implications 

* FDA inspection scores 
signal future recalls. 
* Plant inspections 
using rotating inspectors 
can effectively control 
and monitor quality in 
global supply chains 

* Managers should not: 
- expect physicians to 
detect their defective 
products 
- wait too long for 
additional data before 
recalling 

*Firms should:  
- open recalls quickly,  
- close recalls slowly,  
- apply learning from 
recalls more broadly 

Regulator 
Implications 

* FDA should rotate 
inspectors across plants 
to avoid complacency 

* FDA should guard 
against overly friendly 
relationships with firms 

* FDA should allow 
firms to take sufficient 
time-to-close recalls 

 

As a set, we can see that while the results directly apply to the medical device industry, 

they can be generalized to other industries that are closely regulated and monitored by federal 

agencies. For instance, the pharmaceutical industry and a large portion of the food industry in the 
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US are regulated by the FDA, and have similar processes for inspections, product recall guidelines 

and managerial practices. It is likely that the results of this dissertation are easily generalizable to 

the plants in these two industries. The automotive industry may also benefit from this research. 

Auto plants are inspected by NHTSA investigators, managers face multiple and complex criteria 

when making the recall decision, and responsiveness is pertinent in this industry as well. Finally, 

the consumer products industry, such as toy manufacturers, may take some lessons from this 

research. While consumer products companies do not normally experience federal quality 

inspections, their managers face difficult product recall decisions in which responsiveness is crucial 

to ensure consumer safety. Chapters 3 & 4 may therefore also be applicable to the consumer 

products industry. 

Finally, there are two noteworthy themes which emerge from the research that can inform 

recall research and theory. First, there appears to be a very important behavioral element to product 

recalls that exists within each recall phase. This unexpected behavioral element is present in recall 

causes, recall decisions, and recall responsiveness and learning. Second, my dissertation highlights 

the importance of empirical analyses in demonstrating a relationship between plant-level 

managerial decisions and external product quality performance measures. There are only a handful 

of research studies using product recalls as a dependent variable. In a majority of past empirical 

work, studies have focused on quality programs, such as six-sigma or Total Quality Management 

(TQM), and a few studies have empirically analyzed causes of internal product quality measures 

(Banker et al., 1990; Datar et la., 1993; Fisher and Ittner, 1999; Mukherjee et al., 2000). However, 

very few studies use rigorous econometrics to link decisions at the production plant with external 

product performance, such as product recalls.  

While there are clearly other things that may also matter in causing recalls and leading to the 

recall decision, this dissertation takes an important first step in uncovering significant sources of 

variation in critical phases of the recall process. My hope is that this dissertation will spur other 

researchers to branch out from traditional product quality research paradigms, and seek to more 

fully understand how managers’ decisions effect actual product quality performance in the 

marketplace, using both empirical and behavioral research methods. 
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Appendix A 
 

 

Experiment Communication Emails 
 
First Email: 
 
“[The firm name] is partnering with a research team from the [school name] to understand factors 
that impact product recall decisions in medical devices. A critical aspect of our research partnership 
is a survey-based study. The survey consists of one hypothetical scenario-based question and a few 
demographic questions. You have been selected to participate in this study based upon your work 
experience, geographical location, and functional role. The survey should not take more than 10 
minutes to complete. The link below will take you to the survey… 
 
Your participation in this research project is much needed and greatly appreciated. Please note that 
your responses are completely anonymous. Please complete the survey at your earliest 
convenience.” 
 
Reminder Email: 
 
“This is a reminder to participate in our recall survey. If you have already responded to the survey, 
thank you for your time. If you have not yet responded to this important survey, we request your 
participation. The survey closes on [end date]. 
 
[The firm name] is partnering with a research team from [school name] to understand factors that 
impact product recall decisions in medical devices. A critical aspect of our research partnership is 
a survey-based study. The survey consists of one hypothetical scenario-based question and a few 
demographic questions. You have been selected to participate in this study based upon your work 
experience, geographical location, and functional role. The survey should not take more than 10 
minutes to complete. The link below will take you to the survey… 
 
Your participation in this research project is much needed and greatly appreciated. Please note that 
your responses are completely anonymous. Please complete the survey at your earliest 
convenience.” 
 
 
Experiment Text 
 
Screen 1: Consent 
 
The product recall decision  
  
You are invited to participate in a study investigating factors that impact product-recall decision 
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making. The results of this research will be used to improve the recall decision making process. 
Your participation is key to the success of this study. Please note that your responses are completely 
anonymous and strictly confidential.  
  
The entire survey should take no more than 10 minutes to complete. We really appreciate your 
taking the time to participate in the study. If you have any questions about the study, please call at 
[number given] or email [email given]. Thank you for your assistance. 
  
[name] 
Principal Investigator 
University name 
 
Screen 2: Recall Scenario 
 
[Scenario background, included in every treatment] 
 
You are a member of a cross-functional product recall team. Your team meets whenever signals 
occur which indicate that a product may need to be recalled. Mark Smith, the Director of Quality 
for your division, is the person responsible for initiating recall meetings. Mark calls the meeting to 
order and presents the following scenario.  
 
A cardiac device, on the market for over two years, has had recent failures in the field. Mark reviews 
the failure data and compares it to predicted failure rates. The hazard analysis predicted a 0.05% 
failure rate for this defect type. The cumulative failure rate since product launch is 0.05%, but the 
failure rate has increased to 0.08% for the past 2 months. Before this, it has never been above 0.06% 
in any month since the product was launched; often times it is well below that number.  
 
There are 10,000 of these devices shipped per week on average. This shipment rate has remained 
consistent since product launch. If the current failure rate continues at 0.08%, 156 additional 
devices per year will fail (.0003 x 52 x 10,000) on top of the 260 failures per year originally 
predicted. 
 
[Factor specific text] 
 
While you may need additional information before deciding whether or not to recall this product, 
please indicate your most likely recommendation based only on the information provided. 
 

o Recall. I would recommend recalling all product manufactured since the failure rate 
increased 
 

o No Recall. I would recommend that we continue to monitor and investigate, but not recall 
at this time. 

 
 
Factor Specific Text: 
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Physician Concern Factor: 
 
High:  One of the defective products was used by Dr. Jones, a prominent physician-customer who 
is an advocate for your company and someone you have met on several occasions.  Dr. Jones was 
disappointed by the product defect and has emailed the VP of Quality asking what is being done to 
fix this issue. 
 
Low:  Blank 
 
Defect Undetectable Factor: 
 
High:   Mark also states that if the defect is present in a device, the physician is not likely to 
observe the defect prior to using the product. 
 
Low:  Mark explains that if the defect is present in a device, the physician is likely to observe the 
defect prior to using the product. 
 
Root Cause Understanding Factor: 
 
High:  Both the manufacturing and supplier processes have been reviewed by a team of quality 
engineers. This team discovered that a critical manufacturing process for this product recently 
underwent a process change intended to improve production yields.  The quality engineering team 
believes that the field failures are related to this process change. 
 
Low:  Both the manufacturing and supplier processes have been reviewed by a team of quality 
engineers, and no significant shifts in process capability or increases in defects are found. It is 
unclear at this point what could be causing this problem. 
 
Screen 3. Control Variable Text 
 
Please indicate your functional area 
Operations, Quality, Clinical, Medical, or Other 
 
How many years have you worked at your current firm? 
0-2, 3-5, 5-10, More than 10 
 
Please select gender 
Male, Female 
  

How would you describe the relationship between your company and the FDA? 
Collaborative, Average, Confrontational 
 
Please answer the next three questions to the best of your ability. 
If it takes 5 machines 5 minutes to make 5 widgets, how many minutes would it take 100 machines 
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to make 100 widgets? 
In a lake, there is a patch of lily pads.  Every day, the patch doubles in size.  If it takes 48 days for 
the patch to cover the entire lake, how many days would it take for the patch to cover half the lake? 
If you have any feedback that you feel would improve this study, please enter it here.  We greatly 
appreciate your input. 


